OPERATING INSTRUCTIONS

TYPE 1391-B

PULSE, SWEEP, AND

TIME-DELAY GENERATOR

GENERAL RAD IO COMPANY

OPERATING INSTRUCTIONS

TYPE 1391-B

PULSE, SWEEP, AND

TIME-DELAY GENERATOR

Form 937-D
May, 1960

TABLE OF VOLTAGES AND RESISTANCES (Cont.)

$\begin{gathered} \text { TUBE } \\ \text { (TYPE) } \\ \hline \end{gathered}$	PIN	$\begin{gathered} \text { DC } \\ \text { VOLTS } \\ \text { TO GND } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { RES } \\ \text { TO GND } \\ \hline \end{array}$	$\begin{gathered} \text { TUBE } \\ \text { (TYPE) } \\ \hline \end{gathered}$	PIN	$\begin{array}{\|c\|} \hline \text { DC } \\ \text { VOLTS } \\ \text { TO GND } \\ \hline \end{array}$	$\begin{gathered} \text { RES } \\ \text { TO GND } \\ \hline \end{gathered}$		TERMINAL	AC VOLTS	$\begin{gathered} \text { RES TO } \\ \text { GND } \end{gathered}$
$\begin{gathered} \mathrm{V} 502 \\ (12 \mathrm{AX}) \end{gathered}$	1	40	280k	V509	1	-190	620k	POWER XFMR T601	1-2	115	
	2	-24	210 k	(12AX7)	2	-315	280k		3-4	115	
	3	-23	330k		3	-315	135k		30-31	6.7	
	6	55	280k		6	-230	620k		12-23	6.7	
	7	-24	210 k		7	-315	280k		9-13	6.8	
	8	-23	330k		8	-315	135k		25-26	6.7	
$\begin{array}{\|c\|} \hline \text { V503 } \\ \text { (6AV5GA) } \end{array}$	1	40	180k	$\begin{aligned} & \hline \text { V510 } \\ & \text { (OA2) } \end{aligned}$	1	-170	51		32-33	6.7	
	3	55	750		4	-340	11.9 k		10-11	70	
	5	145	600		5	-190	51		7-8	140	
	8	120	6.8 k		7	-340	11.9 k		6-16	140	
$\begin{array}{\|c\|} \hline \text { V504 } \\ \text { (6AV5GA) } \end{array}$	1	55	180k	$\begin{aligned} & \hline \text { V511 } \\ & (12 \mathrm{BH} 7) \end{aligned}$	1	145	100		27-28	100	
	3	55	750		2	-13	1.1 M		17-18	300	
	5	105	600		3	-7	25k				
	8	120	6.8 k		6	145	0	PL101			
$\begin{array}{\|c\|} \hline \text { V505 } \\ \text { (6AV5GA) } \end{array}$	1	-195	620 k		7	-13	1.1 M		3		∞
	3	-195	51		8	-7	25k		4		∞
	5	-175	840	$\begin{gathered} \text { V601 } \\ \text { (6AS7G) } \end{gathered}$	1	225	180k		5	75	$>50 \mathrm{k}$
	8	-90	5k		2	455	450		6	75	$>50 \mathrm{k}$
$\begin{gathered} \text { V506 } \\ (6 \mathrm{AV} 5 \mathrm{GA}) \end{gathered}$	1	-235	620k		3	300	0		7		50
	3	-195	51		4	225	180k		8		50
	5	-155	840		5	455	450		9		50
	8	-75	5k		6	300	0		10		50
$\begin{gathered} \text { V507 } \\ (6550) \end{gathered}$	3	0	150	$\begin{gathered} \hline \text { V602 } \\ \text { (6AK5) } \end{gathered}$	1	145	43k		11	-150	>10k
	4	26	25 k		2	145	15k		12	-150	$>10 \mathrm{k}$
	5	-175	890		5	225	180k				
	8	-155	600		6	250	5.1k	T201	3-5		5
$\begin{gathered} \hline \text { V508 } \\ (6550) \end{gathered}$	3	-26	150		7	145	15k		2-6		5
	4	26	25 k	V603	2	0	0		1-7		5
	5 8	-155 -155	890 600	(OD3)	5	145	15k				

CHANGE NOTICE
for
Operating Instructions for the
Type 1391-B Pulse, Sweep, and Time-Delay Generator
(Form 937-D)

Please make the following corrections in your manual:
page 2, paragraph 1.2.4, line 2: Delete "(30, Figure 1.1)"
page 2, paragraph 1.2.4, line 4: Delete "(31)."
page 10 , paragraph 2.6 j , line 2 : change "SWEEP POS" to read "SWEEP NEG."
pages 28, 29: Substitute new Table of Voltages and Resistances.
pages 32 et seq: Note the following Parts List changes:
All Type COC- 63 capacitors are changed to Type COC-62.

GENERAL RADIO COMPANY
West Concord, Massachusetts
TABLE OF CONTENTS
Section 1 INTRODUCTION 1
1.1 Purpose 1
1.2 Description 1
Section 2 OPERATING PROCEDURE 7
2.1 General 7
2.2 Auxiliary Equipment 7
2.3 Initial Control Settings 7
2.4 Synchronization Procedure 9
2.5 Delay Circuit. 9
2.6 Sweep Circuit. 10
2.7 Pulse-Generating Circuit 11
2.8 Use of the Pulse Source Driving Function Switch 11
Section 3 CALIBRATION PROCEDURE 12
3.1 Introduction 12
3.2 Test Equipment 12
3.3 Calibration and Adjustment of Input Circuits 12
3.4 Delay Circuits 13
3.5 Sweep- and Pulse-Timing Adjustments 14
3.6 Power-Supply Adjustments 15
Section 4 DETAILED CIRCUIT DESCRIPTIONS 16
4.1 General 16
4.2 Input Circuits 16
4.3 Delay Circuits 16
4.4 Coincidence Circuits 17
4.5 Sweep Circuits 18
4.6 Pulse-Timing Circuits 19
4.7 Pulse-Generating Circuits 19
4.8 Power Supplies 20
Section 5 SERVICE AND MAINTENANCE 21
5.1 General 21
5.2 Service 21
5.3 Special Techniques for Trouble-Shooting Delay, Sweep, and Pulse-Timing Circuits 22
5.4 Setup Procedure for the Pulse Duration and Position Dial Assembly 23
5.5 Trouble-Shooting Chart. 23
5.6 Trouble-Shooting Procedure 26
PARTS LISTS AND WIRING DIAGRAMS 31

Figure 1.1.
Type 1391-B Pulse, Sweep, and Time-Delay Generator.

TYPE 1391-B
 PULSE, SWEEP, AND TIME-DELAY GENERATOR

Section 1 INTRODUCTION

1.1 PURPOSE. The Type 1391-B Pulse, Sweep, and Time-Delay Generator (Figure 1.1) is a versatile laboratory instrument designed to generate (1) push-pull pulses, of durations from 0.025 $\mu \mathrm{sec}$ to 1.1 sec and at repetition rates up to 250 kc ; (2) linear sweep voltages of durations from $3 \mu \mathrm{sec}$ to 0.12 sec ; (3) time delays from $1 \mu \mathrm{sec}$ to 1.1 sec ; and (4) direct and delayed trigger pulses, which can be used independently or to delay the initiation time of the sweep and main pulse relative to the input driving signal. Transition times of the output pulses (0.015 $\mu \mathrm{sec}$ rise time) are compatible with most present-day oscilloscopes. The internal sweep circuit makes possible the use
$\frac{\text { No. }}{1}$ TRIGGER $\frac{\text { Name }}{\text { SELECTOR }}$
2 TRIGGERING LEVEL
TIME DELAY

3 MICROSECONDS
4 RANGE
5 COINCIDENCE GATE DURATION
COINCIDENCE SENSITIVITY

7 SWEEP TRIGGER
PULSE AND SWEEP TIMING

SWEEP MULTIPLIER
Sweep Duration
Selector
VERNIER
PULSE DELAY
PULSE DURATION
PULSE AMPLITUDE
OUTPUT IMPEDANCE

PULSE START
STOP TRIGGERS
16 RESET SWEEP AND DELAY

Type
4-pos selector switch

Concentric rotary control

Continuous rotary control 6 -pos selector switch
Continuous rotary control

Continuous rotary control

2-pos toggle switch

5-pos selector switch
3 -pos selector switch

Continuous rotary control
6 -in. rotary control and dial 4 -in. rotary control and dial 10 -position selector switch
5 -pos selector switch

3-pos selector switch

2-pos spring-return toggle switch
of an inexpensive oscilloscope by direct connection to the deflection plates.
1.2 DESCRIPTION.
1.2.1 GENERAL. The Type 1391-B is available in either relayrack or bench mounting, and is housed in two units. The upper unit shown in Figure 1.1 is the generator itself, with all operating controls at the front panel. Below this unit is the power supply, with the main POWER switch and pilot light.
1.2.2 CONTROLS. The following table lists the controls on the front panel of the Type 1391-B Pulse, Sweep, and Time-Delay Generator (index numbers refer to Figure 1.1):

Function

Selects direction of input-signal zero-crossing to produce direct synchronizing signal, and provides for ac or dc coupling of input signal.
Sets dc level at which input circuits trigger.

Determines interval between delayed and direct synchronizing pulses over the range from $1 \mu \mathrm{sec}$ to 1.1 sec .
Determines duration of coincidence gate from 3 to 1000 μ sec.
Selects threshold at which coincidence driving signals will produce delayed sync signals.
Selects either direct or delayed sync signal to start sweep.

Determine sweep duration from 3 to $120,000 \mu \mathrm{sec}$ in decimal multiples of 3,6 , and $12 \mu \mathrm{sec}$.

Adjusts sweep duration by $\pm 10 \%$ from nominal value.
Sets duration of pulse.
Sets pulse duration.
Sets pulse amplitude.
Selects any one of five load resistances for pulse current source.

Routes internally produced or externally applied triggering signals to determine pulse duration.
Provides artificial reset pulse to restore sweep and delay circuit action.

DEFINITIONS: Terms used in this manual are defined as follows: DRIVES are input signals used to synchronize the generator with external sources. SYNCHRONIZING signals are output signals from the generator, used to synchronize the external system to the generator. TRIGGERS are signals circulating within the instrument to synchronize the various internal circuits. PULSE is generally the main output pulse; other rectangular waves gen-
erated within instrument are called gates to distinguish them from the main pulse. Timing signals produced by the delay circuit and occurring at a time indicated by the delay control settings are called DELAYED. Timing signals occurring after start of sweep by a time indicated by PULSE DELAY setting are called START signals, while those occurring after START by a time indicated by the PULSE DURATION setting are called STOP signals.
1.2.3 TERMINALS. The following terminals are on the front panel of the Type 1391-B Pulse, Sweep, and Time-Delay Generator (index numbers refer to Figure 1.1):

No.	Name	Type	Function
17	PRF DRIVE	Binding post pair	To external prf-determining signal source.
18	DIRECT SYNC OUT	Binding post pair	To external device to be synchronized by direct pulse.
	COINCIDENCE DRIVE		
19	POS	Binding post pair	Positive or negative pulses to coincidence circuits.
20	NEG	Binding post pair	
21	DELAYED SYNC OUT	Binding post pair	To external device to be synchronized after delay interval.
	PULSE		
22	POS	Binding post pair and coaxial connector	Positive pulse output.
23	NEG	Binding post pair and coaxial connector	Negative pulse output.
24	D-C	Binding post pair	Upon removal of link, permits insertion of d-c voltage to adjust pulse d-c component.
	GATE		Output of pulses occurring simultaneously with sweep.
25	NEG	Binding post pair	
26	POS	Binding post pair	
	SWEEP		Output of sawtooth signals of duration determined by SWEEP controls.
27	NEG	Binding post pair	
28	POS	Binding post pair	
29	START	Binding post pair	Terminals at which are available internally generated pulsetiming triggers or to which are applied external triggers to time pulse, depending on setting of PULSE START STOP TRIGGERS switch.
30	STOP	Binding post pair	

1.2.4 INDICATOR LAMPS. Also on the front panel are the DELAY MONITOR lamp (30, Figure 1.1), which indicates the presence of delayed synchronizing pulses at the DELAYED SYNC OUT terminals, and the SWEEP MONITOR lamp (31), which indicates the presence of the sweep signal at the SWEEP output terminals.
1.2.5 BASIC CIRCUITS.
1.2.5.1 Input Circuits. The input circuits produce direct trigger signals and direct synchronizing signals from an input drive signal. By means of the TRIGGER SELECTOR switch, either a positive- or negative-going zero crossing of the input signal can be selected to produce the direct trigger and the accompanying direct synchronizing signal, available at the DIRECT SYNC OUT terminals. This switch also provides for ac or dc connection of the input signal to the trigger circuits.
1.2.5.2 Delay Circuits. The delay circuits produce delayed triggers and delayed synchronizing signals whose time of occurrence relative to the direct trigger is controlled by the DELAY MICROSECONDS and RANGE controls over a total range of 1 μ sec to 1.1 seconds. The coincidence system, consisting of a monostable coincidence-gate circuit and a gating amplifier of adjustable sensitivity, is not used in "normal" operation (i.e., with the COINCIDENCE GATE DURATION and COINCIDENCE SENSITIVITY controls at NORMAL settings). When the coincidence system is used, two inputs are required to produce the
delayed synchronizing signal. The first operates the delay circuits through the input circuit PRF DRIVE terminals to open the coincidence gate; the second, a brief pulse fed into the COINCIDENCE DRIVE terminals, will cause the formation of the delayed trigger and synchronizing signal only when the gate is open.
1.2.5.3 Sweep Circuit. The sweep circuits are started by either the direct or the delayed trigger, depending on the position of the SWEEP TRIGGER switch. These circuits produce (1) a linearly rising waveform that attains an amplitude of 135 volts in 3 , 6 , or $12 \mu \mathrm{sec}$ or decimal multiples thereof up to a maximum time of $120,000 \mu \mathrm{sec}$, and (2) a gate signal with the same duration as the sweep. There are three controls for the sweep circuit: the 3,6 , or $12-\mu \mathrm{sec}$ switch, a SWEEP MULTIPLIER, and a VERNIER, affording about ± 10-percent variation of the sweep duration. Outputs from the sweep circuits are SWEEP, positive and negative, and GATE, positive and negative.
1.2.5.4 Pulse-Timing Circuits. These circuits are adjusted by the PULSE DURATION and PULSE DELAY controls, which determine the formation times of the START and STOP triggers relative to the sweep. These triggers are used to start and stop the main pulse.

The pulses produced in the timing circuits are connected through the PULSE START STOP TRIGGERS switch to the

Figure 1.2, System Block Diagram.
pulse-generating circuits. This switch, shown schematically in Figure 1.2, will:
a. when in the INTERNAL (NORMAL) position, start and stop the pulse at the time set on the DURATION and DELAY controls. (In this position, marker pulses corresponding to start and stop times are fed to the START and STOP terminals.)
b. when in the EXTERNAL position, provide for externally generated pulses to start and stop the pulse.
c. when in the INTERNAL + EXTERNAL position, permits the internally produced start and stop triggers to be added to externally generated pulses to start and stop the pulse. Thus the delay circuits and the pulse trigger circuits can be used simultaneously to produce a double pulse.
1.2.5.5 Pulse Source Circuits. These circuits form a bistable system that responds to start and stop triggers generated either internally or externally to produce the push-pull pulse of adjustable amplitude, with an adjustable output impedance.

1.2.6 GENERAL CIRCUIT DESCRIPTIONS.

1.2.6.1 Input Circuits. (See Figures 1.3 a, b.) The input circuits consist of an input amplifier, Schmitt circuit, pulse-forming circuit, amplifier, and output cathode follower. The Schmitt circuit is driven by the direct-coupled amplifier, and in turn drives the direct-trigger pulse-forming circuit to produce the direct triggers at prf's to 500 kc . This direct trigger synchronizes the remainder of the circuit groups within the instrument. It can be formed on whichever zero-crossing the user selects. For sine- and square-wave inputs, the trigger-generating system requires about 0.3 volt peak; for brief pulses of either polarity, about 1 volt.

The sweep and delay circuits can be started simultaneously by the direct trigger, or the sweep circuit can be triggered by the delayed trigger. These two modes of operation, selected by the SWEEP TRIGGER switch, either make the delay and sweep circuits completely independent or make use of the delay circuit to delay the sweep with respect to the direct trigger.

The direct synchronizing signal is a 100 -volt, $1-\mu \mathrm{sec}$ positive pulse fed from a cathode follower to the DIRECT SYNC OUT binding posts on the front panel. Lagging slightly behind the direct trigger, it can be used to synchronize auxiliary equipment such as oscilloscopes and counters. It can also be used to initiate the main pulse when the pulse duration is to be determined by the delay circuit (refer to paragraph 2.8.2).

When the generator is driven by a brief, rapidly rising input pulse, there is a time delay of $0.4 \mu \mathrm{sec}$ between this pulse and the direct synchronizing signal. This time delay permits (1)

Figure 1.3a. Block Diagram of Input Circuits.

Figure 1.3b. Time Relationships in Input Circuits.

Figure 1.4a. Block Diagram of Delay Circuits.
the establishment of an accurately predetermined minimum delay, and (2) the observation of the direct synchronizing signal on almost any oscilloscope triggered by the input signal.
1.2.6.2 Delay Circuits. (See Figure 1.4a.) The direct trigger starts the delay circuit by opening the bistable gate. The opening of the gate starts a sweep generator, which produces a rising voltage whose slope is determined by an r-c circuit selected by the DELAY RANGE control. The DELAY MICROSECONDS control, a. 10-turn potentiometer, provides a voltage reference foran amplitude comparator. When the sweep voltage reaches the level set by the delay control, the amplitude comparator operates a reset trigger generator that closes the bistable gate.

The dial for the 10 -turn potentiometer is calibrated linearly in 1000 divisions so that the delay can be read with high incremental resolution. Delay is direct-reading in microseconds, with the basic range from 1 to 11 microseconds. A six-decade range switch selects $\mathrm{R}-\mathrm{C}$ time constants in the sweep generator to produce multipliers from 1 to 10^{5}.
1.2.6.3 Coincidence System. A monostable coincidence gate, adjustable from about 3 to $1000 \mu \mathrm{sec}$, is a part of the delay circuit. The reset trigger produced by the main delay circuit opens this gate $1 \mu \mathrm{sec}$ to 1.1 second after the direct trigger. The coincidence gate permits time-selection operations. (See Figures $1.4 \mathrm{~b}, \mathrm{c}$, and d.)

In normal operation, the opening of the coincidence gate produces the delayed synchronizing signal (Figure 1.4b). However, with reduced sensitivity of the coincidence amplifier, the circuit can no longer be operated by the opening of the coinci.dence gate alone, and the circuits are prepared for coincidence operation. In this condition, during the intervals in which the gate is open, the injection of a positive or negative pulse at the appropriate COINCIDENCE DRIVE terminals will cause the coincidence amplifier to operate, resulting in the formation of the
delayed synchronizing signal and delayed trigger. While the coincidence gate is open, as many delayed synchronizing signals and triggers will be produced as there are driving pulses to the coincidence circuit (Figure 1.4c).

Multiple delayed synchronizing pulses can be produced by means of the delay and coincidence circuits, as shown in Figure 1.4 d . The delay circuit can divide the input prf by any number up to about 20 , depending on the setting of the delay time controls. Direct synchronizing pulses are fed to the POS COINCIDENCE DRIVE terminal. Any direct synchronizing pulse that exists while the coincidence gate is open will cause a delayed synchronizing pulse to be generated.
1.2.6.4 Sweep Circuit. The sweep circuit (Figure 1.5a), similar in form to the main delay circuit, consists of a bistable gate, a sweep generator and amplitude comparator, and a reset trigger amplifier, which produces the reset signal to close the gate. In this system, however, the sweep generator is a "bootstrap" circuit. It consists of a pentode switching tube, which is turned off by the sweep gate to start the sweep, a cathode follower with a gain of nearly unity, a feedback diode, and a gated clamp circuit to control the initial sweep voltage. The linearly rising voltage waveform in this circuit is fed to the sweep-amplitudecomparator circuit, which switches when the sweep voltage reaches a preset 135 volts to form the reset trigger. In addition, the positive sweep voltage is fed (1) to the pulse-timing circuit, (2) to a cathode follower to provide positive sweep, and (3) through an inverter-cathode-follower to produce the negative sweep. The bistable sweep gate drives a phase-splitter, producing a push-pull waveform at the gate outputterminals. The negative sweep at the output terminal drives a stage operating a neon indicator lamp to show that the sweep circuits are operating.

Figure 1.4b.
Delay-Circuit Timing, Coincidence Circuit Set for Normal Operation.

Figure 1.4c.
Timing of Multiple Pulses.

Figure 1.4d. Time Relationships When Delay Circuit Is Used as a PRF Divider. Coincidence Circuit Driven by Direct Synchronizing Pulse.

Figure 1.5b.
Time Relationships in the Sweep Circuit.
1.2.6.5 Pulse-Timing Circuits. The sweep voltage operates two amplitude comparators (Figure 1.6a). The comparator at the lower voltage level produces the start trigger (Figure 1.6b), while that at the higher voltage produces the stop trigger. The d-c control voltages for these comparators are set by the concentric panel controls for pulse duration and pulse delay (Figure 1.7). The triggers produced by the changes of state of the comparator circuits are differentiated and fed through a pair of cathode followers to the PULSE START STOP TRIGGERS switch, where they are fed to the pulse generator circuit to time the pulse and to the START and STOP panel terminals. When the PULSE START STOP TRIGGERS switch is set to INTERNAL CIRCUITS (NORMAL), these triggers operate a pair of amplifier stages, which shape them to drive the bistable multivibrator circuit of the pulse source.
1.2.6.6 Main Pulse-Generating Circuits. (See Figure 1.6a.) The START and STOP triggers operate a high-speed, bistable gate circuit. This circuit drives a pair of amplifiers, which in turn operate a pair of drivers for the output stage. The push-pull output stage is a pair of beam tubes used as a current source with switched load resistors, across which the pulse of voltage is

Figure 1.7. Close-up of Pulse-Delay and Duration Dials.

Figure 1.6a. Block Diagram of Pulse-Timing and Output Circuits.

Figure 1.6b.
Pulse Timing Diagram.
developed. The conducting output tube produces a current of 150 ma. Screen voltage on this stage is varied to control pulse amplitude.

The output system is balanced, and the push-pull pulses appear at coaxial connectors and parallel binding posts. The low-potential side of the load resistors is connected to an ad-
ditional binding post normally grounded to the panel through a shorting link. Under these conditions the output pulses contain an a-c component negative with respect to ground. If the shorting link is removed, the d-c component of an external voltage (from any low-voltage laboratory supply or battery able to furnish 150 ma) can be varied by about ± 25 volts.

Section

OPERATING PROCEDURE

2.1 GENERAL. The Type 1391-B Pulse, Sweep, and TimeDelay Generator can, for instructional purposes, be considered four separate instruments. If a thorough familiarity with all controls is neither desired or needed, study merely those paragraphs that apply to the circuits being used, as listed below:

```
2.2 Auxiliary Equipment
2.3 Initial Control Settings
2.4 Synchronization
2.5 Delay Circuit
    2.5.1 Normal Use
    2.5.2 Time Selection
2.6 Sweep Circuit and Pulse Duration-Delay System
2.7 Pulse-Generating Circuit
2.8 Use of the PULSE START STOP TRIGGERS
        switch
```

2.2 AUXILIARY EQUIPMENT. A few auxiliary instruments are usually needed as components of the external system. First, a source of a timing waveform is needed to determine the repetition rate of the pulser. This can be a simple audio-ultrasonic oscillator, such as the General Radio Type 1210-C Unit R-C Oscillator, Type 1301-A Low-Distortion Oscillator, Type 1302 Oscillator, or Type 1304-B Beat-Frequency Oscillator, or it can be a crystal oscillator with frequency dividers to produce any frequency up to the $100-200-\mathrm{kc}$ region. More complex sources of time-coherent pulses are needed for the time-selection operations described in paragraph 2.5.2. For these operations a timing generator such as the Tektronix Type 180, Dumont Type 300 or equivalent can be used.

Choice of oscilloscope will depend on the application. An oscilloscope with broadband video amplifier is, of course, necessary to permit observation of short-duration pulses. In order to view the output pulse without degradation of rise time or shape, the pulse must be amplified with a bandwidth in excess of 20 Mc , or else the pulse must be presented by direct connection to
the oscilloscope deflection plates. Many applications, of course, do not require that the ultimate rise times be attained, and for these tests less complicated oscilloscopes can be used.

The waveforms shown in this section (Figures 2.1 through 2.7) are oscillograms taken directly from the screen of a Tektronix Type 551 oscilloscope. Throughout the following sections, the prf set by the timing oscillator will be $10 \mathrm{kc}(100-\mu \mathrm{sec}$ period). The operator should at first keep the dial settings in the delay and sweep circuits considerably less than this value. When the delay or sweep-duration settings equal or exceed the period, the oscilloscope patterns can become unstable or difficult to interpret.
2.3 INITIAL CONTROL SETTINGS. Before turning the instrument on, set the following controls as indicated:

Control	Setting
TIME DELAY RANGE TIME DELAY MICROSECONDS	$\left.\begin{array}{l} 10-100 \mu \mathrm{sec} \\ 5.00 \end{array}\right\} 50-\mu \mathrm{sec}$
COINCIDENCE GATE DURATION	NORMAL - $3 \mu \mathrm{sec}$
COINCIDENCE SEN- SITIVITY	NORMAL
SWEEP TRIGGER	DIRECT
TRIGGER SELECTOR	POS GOING AC
TRIGGERING LEVEL	CENTER
PULSE AMPLITUDE	10
OUTPUT IMPEDANCE	50
PULSE DURATION	5.0 on center scale ($50-\mu \mathrm{sec}$ pulse)
PULSE DELAY	0.5 on center scale ($5-\mu \mathrm{sec}$ delay)
SWEEP MULTIPLIER	10 ($60-\mu$ sec sweep)

FIGURE 2.1. $10-\mathrm{kc}$ PRF, $20 \mu \mathrm{sec} / \mathrm{cm}$

A. INPUT SIGNAL, TRIGGER SELECTOR AT POSITIVE

B. INPUT SIGNAL, TRIGGER SELECTOR AT NEGATIVE

C. DIRECT SYNC PULSE

FIGURE 2.2. $10-\mathrm{kc}$ PRF $40 \mu \mathrm{sec}$ DELAY $20 \mu \mathrm{sec} / \mathrm{cm}$

A. DIRECT SYNC
B. DELAY SYNC, $40 \mu \mathrm{sec}$ DELAY
C. POSITIVE SWEEP, $60 \mu \mathrm{sec}$
D. NEGATIVE PULSES, DELAY 20, DURATION 20

FIGURE 2.3. 100 kc PRF DELAY SET FOR $70 \mu \mathrm{sec}$ SWEEP SET FOR $30 \mu \mathrm{sec}$

A. DIRECT SINC
B. DELAY SYNC
C. SWEEP, $30 \mu \mathrm{sec}$
D. PULSE, $10 \mu \mathrm{sec}$ PULSE, $10 \mu \mathrm{sec}$ DELAY ON SWEEP

FIGURE 2.4. DELAY SET FOR $72 \mu \mathrm{sec}, \mathrm{PRF} 100 \mathrm{kc}$ TRIPLE SWEEP AND PULSE BY INTERNAL-MULTIPLE-PULSE METHOD

FIGURE 2.5. PULSE PAIR, PRF 10 kc , DELAY $20 \mu \mathrm{sec}$ DIRECT SYNC TO POS COINC DRIVE TO PRODUCE DOUBLE PULSE

A. DIRECT SYNC
B. DELAY SYNC
C. SWEEP
D. PULSE

A. DIRECT SYNC
B. DELAY SYNC
C. SWEEP
D. PULSE

FIGURE 2.6.

A. POS SWP, $10 \mathrm{kc} 60 \mu \mathrm{sec}, 10 \mu \mathrm{sec} / \mathrm{cm}$
B. NEG PULSE 50μ sec $10 \mu \mathrm{sec} / \mathrm{cm}$
C. START PULSE
D. STOP PULSE

FIGURE 2.7. MULT PULSING, EXTERNAL METHOD ($20 \mu \mathrm{sec} / \mathrm{cm}$)

2.3 INITIAL CONTROL SETTINGS. (Cont)

Control
SWEEP DURATION μ SEC
VERNIER

PULSE START

 STOP TRIGGERSSetting
$6 \quad 60-\mu$ sec sweep

0
INTERNAL (NORMAL)

2.4 SYNCHRONIZATION PROCEDURE.

a. Connect an audio oscillator (output at least one volt) to the PRF DRIVE binding posts, and set the oscillator for a frequency of 10 kc .
b. Connect an oscilloscope (prepared to write at about 20 μ sec per division) as follows:
(1) Connect the oscilloscope ground to the ground of the Type 1391-B.
(2) Connect the oscilloscope external synchronizing ortrigger input to the Type 1391-B DIRECT SYNC OUT.
(3) Set the oscilloscope to accept a positive-going external synchronizing signal.
(4) Connect the oscilloscope vertical amplifier to the Type 1391-B PRF DRIVE binding posts.
c. Turn all equipment on. After a warm-up time of about a minute, both neon indicators on the Type 1391-B should glow. If either indicator does not light, flip the RESET switch to start the sweep or delay circuit.
d. Adjust oscilloscope to give a stable presentation and observe the input waveform on the oscilloscope. It should appear as shown in Figure 2.1A.
e. Set the TRIGGER SELECTOR switch to NEG GOING AC. The oscilloscope pattern should change phase by about 180 degrees, and should appear as shown in Figure 2.1b.
A. 10 kc DIRECT SYNC PULSE
B. 100 -kc PULSES TO POS COINC DRIVE
C. DELAYED SYNC
D. $6-\mu \mathrm{sec}$ SWEEP (SWEEP TRIGGER SWITCH

IN DELAYED POSITION)
f. Connect the oscilloscope input to the Type 1391-B DIRECT SYNC OUT terminals and observe the 75 -volt, $1.5-\mu$ sec positive synchronizing pulse. It should appear as shown in Figure 2.1 C or 2.2 A .

2.5 DELAY CIRCUIT.

2.5.1 NORMAL USE.

a. Leave the input circuits connected as in paragraph 2.4, with the TRIGGER SELECTOR switch set for either positive- or negative-going triggering. Input oscillator frequency should be set at 10 kc .
b. Move the oscilloscope vertical input to the DELAYED SYNC OUT terminals. The positive delayed synchronizing pulse should appear as shown in Figure 2.2A.
c. Move the TIME DELAY MICROSECONDS dial to 2.00 and observe the motion of the delayed synchronizing pulse. It should appear as in Figure 2.2B. Change the setting of the TIME DELAYRANGE switch to $1-10 \mu \mathrm{sec}$, and again observe the pulse.
d. Set the TIME DELAY RANGE switch to the $10-100-\mu \mathrm{sec}$ range, and increase the MICROSECONDS dial setting from 5.00 to 11.00 (fully clockwise). This produces a delay of $110 \mu \mathrm{sec}$. If the delay indicator lamp goes out, flip the RESET switch to start the delay.
e. Remember that the period set by the timing oscillator was only $100 \mu \mathrm{sec}$. The delay circuit is now "counting down", and the output period from the delay circuit is 5 kc or $200 \mu \mathrm{sec}$. Figure 2.3 illustrates this principle.
f. Return the DELAY MICROSECONDS dial to 5.00 .
2.5.2 TIME SELECTION. There are two methods of using the delay circuits for time selection. The method described in paragraph 2.5.2.1 (Figure 1.4d) does not require an external timing source, but uses the direct sync to produce internal multiple pulses. The second method, described in paragraph 2.5.2.2, requires the use of a timing-pulse generator.

2.5.2.1 Internal Multiple Pulse Method.

a. Connect an external audio oscillator (set for 10 kc) to PRF DRIVE.
b. Set the TRIGGER SELECTOR switch to POS GOING AC.
c. Set the COINCIDENCE SENSITIVITY control fully counterclockwise.
d. Set the COINCIDENCE GATE DURATION control to 250.
e. Set the TIME DELAY RANGE switch to the $100 \mu \mathrm{sec}-1$ msec range.
f. Set the TIME DELAY MICROSECONDS dial to 9.20 .
g. Connect the oscilloscope vertical-amplifier input to the DELAYED SYNC OUT terminals.
h. Set the oscilloscope writing rate at $200 \mu \mathrm{sec}$ per division.
i. Set the oscilloscope for internal positive sync (or external positive sync and connect sync input to the Type 1391-B DELAYED SYNC OUT).
j. Connect a wire lead from the DIRECT SYNC OUT terminal to the POS COINCIDENCE DRIVE terminal.
k. It may be necessary to advance the COINCIDENCE SENSITIVITY control clockwise if the DELAY MONITOR lamp does not come on when the SYNC and DRIVE terminals are connected.

1. The DELAY MONITOR lamp may go out when the TIME DELAY MICROSECONDS dial is moved over each $100-\mu \mathrm{sec}$. point. The delay circuit can be started by means of the RESET switch.
m . The oscilloscope pattern should be similar to that shown in Figure 2.3B. A timing diagram showing the action of the input and delay coincidence circuit is shown in Figure 1.4d, and the action is explained in paragraph 1.2.6.3. At this point it may be necessary to readjust carefully the oscilloscope synchronizing controls to obtain a stable pattern since the waveform is complex.
2.5.2.2 Time Selection, with an External Timing Generator.
a. Connect a $1-\mathrm{kc}(1000-\mu \mathrm{sec})$ pulse output from the timing generator (amplitude over 10 volts) to the PRF DRIVE terminals.
b. Set the TRIGGER SELECTOR switch to SINGLE PULSE, and for the appropriate polarity.
c. Connect $100-\mu$ sec pulse of either polarity from the timing generator to the appropriate COINCIDENCE DRIVE terminals.
d. Connect the oscilloscope vertical-amplifier input to the Type 1391-B DELAYED SYNC OUT terminals.
e. Connect the oscilloscope sync input to the PRF DRIVE terminals.
f. Set the oscilloscope synchronizing controls for the polarity of the input pulse, and set the oscilloscope writing rate at $200 \mu \mathrm{sec}$ per division.
g. Set the TIME DELAY RANGE switch to the $100-\mu \mathrm{sec}-$ 1 -msec range.
h. Set the TIME DELAY MICROSECONDS dial to 5.50 .
i. Set the COINCIDENCE GATE DURATION control to 200.
j. Increase the setting of the COINCIDENCE SENSITIVITY control from its counterclockwise limit until the indicator lamp glows.
k. Experiment with the COINCIDENCE SENSITIVITY control to obtain maximum amplitude from the two delayed synchronizing pulses that appear. Note that all $100-\mu$ sec pulses appear when the control is in the NORMAL (clockwise) position.

Correct setting should yield a pattern similar to that shown in Figure 2.7C.

1. The TIME DELAY MICROSECONDS and COINCIDENCE GATE DURATION controls can now be varied to study the circuit action. The basic principles of operation of this circuit are presented in paragraph 1.2.6.3, and Figure 1.4 c shows an idealized time diagram illustrating the time selection system.
m. Now obtain two delayed synchronizing pulses (as in step k), and move the oscilloscope vertical amplifier input connection to the SWEEP POS terminals.
n. With the SWEEP TRIGGER switch at DIRECT, note that there is one $60-\mu \mathrm{sec}$ sweep sawtooth for each $1000-\mu \mathrm{sec}$ pulse to the PRF DRIVE terminals.
o. Set the SWEEP TRIGGER switch to DELAYED, and note that there is a sweep for each $100-\mu$ sec timing pulse selected (Figure 2.2D).
p. Repeat step 1 , observing the sweep instead of the delayed synchronizing signals.

2.6 SWEEP CIRCUIT.

a. Set all controls to the positions given in paragraph 2.3.
b. Connect the prf drive oscillator, set at 10 kc to give a $100-\mu \mathrm{sec}$ time base, to the PRF DRIVE terminals.
c. Connect the oscilloscope vertical amplifier input to the SWEEP POS terminals.
d. Connect the oscilloscope sync (or trigger) input to the Type 1391-B DIRECT SYNC OUT terminals. Set the oscilloscope for a positive synchronizing signal.
e. Set the oscilloscope writing rate to 20μ sec per division.
f. With all equipment on and warmed up, check that the DELAY MONITOR and SWEEP MONITOR indicator lamps are on. If either indicator does not glow, flip the RESET switch. If both lamps still do not glow, recheck the control settings against those given in paragraph 2.3.
g. Note that one $60-\mu \mathrm{sec}$ sweep is generated for each input cycle. The oscilloscope pattern should appear as shown in Figure 2.2 C .
h. Change the sweep duration to 30 by setting the SWEEP DURATION μ SEC control to 3 (with the SWEEP MULTIPLIER switch still at 10). Then generate $3-, 6-$, and $12-\mu$ sec pulses by setting the SWEEP MULTIPLIER switch to 1 and switching the SWEEP DURATION μ SEC control to 3,6 , and 12 .
i. Return the SWEEP MULTIPLIER switch to 10 and the SWEEP DURATION μ SEC switch to 6 .
j. Connect the oscilloscope vertical amplifier input to the SWEEP POS, GATE POS, and GATE NEG terminals and observe the negative sweep and the positive and negative gates. Then return the oscilloscope connection to the SWEEP POS terminals.
k. Place the SWEEP TRIGGER switch in the DELAYED position to delay the start of the sweep $50 \mu \mathrm{sec}$.

1. Move the TIME DELAY MICROSECONDS dial to move the sweep in time relative to the direct synchronizing pulse. The delayed trigger may be lost if the delay setting exceeds 100 $\mu \mathrm{sec}$. If it is lost, flip the RESET switch.
m. If the sweep controls are set for a duration in excess of $100 \mu \mathrm{sec}$, the sweep circuit will ignore the triggers that occur during sweep time and thereby reduce the sweep recurrence rate. Observe this effect as directed in steps n and o.

TYPE 1391-B PULSE, SWEEP, AND THME-DELAY GENERATOR

n. Set the SWEEP DURATION μ SEC control to 12 and the SWEEP MULTIPLIER to 10 to produce a $120-\mu \mathrm{sec} s w e e p$. The sweep recurrence rate is now 5 kc . If the SWEEP MONITOR lamp goes out, flip the RESET switch.
o. Reset the sweep controls for $60 \mu \mathrm{sec}$ (SWEEP DURATION μ SEC to 6 , SWEEP MULTIPLIER to 10), and vary the input timing frequency from 10 kc at the audio generator. Note that as the frequency is increased toward 16 kc , the sweep becomes instable. The vernier control can be set to either + or -10% to restore stability.

2.7 PULSE-GENERATING CIRCUIT.

a. Set all controls to the positions listed in paragraph 2.3 .
b. Connect the oscilloscope vertical amplifier input to the PULSE POS terminals. If either brief pulses or a fast rise time is desired, use a coaxial cable for this connection.
c. Connect the oscilloscope ext sync to the Type 1391-B DIRECT SYNC terminals.
d. Observe the output positive $50-\mu \mathrm{sec}$ pulse. Experiment with the DELAY and DURATION controls, setting DELAY to 20, DURATION to 20. The negative pulse should appear as in Figure 2.2 D .
e. Move the oscilloscope connection to the PULSE POS terminals and observe the positive $40-\mu \mathrm{sec}$ pulse.
f. Reduce the pulse duration from 50 to $25 \mu \mathrm{sec}$ by switching the SWEEP DURATION μ SEC control to 3 . Observe the pulse duration and delay and return the SWEEP DURATION μ SEC switch to 6 .
g. Reduce the pulse duration to $25 \mu \mathrm{sec}$ by resetting the PULSE DURATION (inner) dial.
h. Reposition this $25-\mu \mathrm{sec}$ pulse to start $25 \mu \mathrm{sec}$ after the sweep by rotating the PULSE DELAY dial counterclockwise. Note that the three rings of numbers on the PULSE DURATION and PULSE DELAY dials correspond to the three settings of the PULSE SCALE switch.
i. Now pulses of $2.5 \mu \mathrm{sec}$ can be obtained with the SWEEP MULTIPLIER switch set at 1 . Various other pulse durations and delays can be set by means of the sweep switches, PULSE DURATION, and PULSE DELAY controls.
j. Short Pulses: Decrease the sweep duration to $3 \mu \mathrm{sec}$. Then decrease the PULSE DURATION setting until a pulse of minimum duration is produced. Note that this pulse can be reduced even beyond the usual amplitude, and that the pulse polarity will reverse suddenly at a DURATION setting below zero. This is characteristic, since it is not possible to produce a mechanical stop of sufficient accuracy to stop the motion of the DURATION dial at exactly zero.

Figure 2.8. Adding Network for Multiple Pulsing.
k. Set up a $1-\mu \mathrm{sec}$ pulse and experiment with the OUTPUT IMPEDANCE and PULSE AMPLITUDE controls. Some defects might appear in the pulse due to impedance mismatch as the OUTPUT IMPEDANCE setting is varied. Note also that the PULSE AMPLITUDE control adversely affects the pulse shape when the pulse is set to greatly reduced values. The PULSE AMPLITUDE control is generally satisfactory for pulses of long duration and over a $10-$ or $20-\mathrm{db}$ range, but for best pulse shape an attenuator or a pad of the proper impedance is recommended.

2.8 USE OF THE PULSE START STOP TRIGGERS SWITCH.

2.8.1 INTERNAL (NORMAL) POSITION.

a. Set all controls to the positions listed in paragraph 2.3.
b. Set the oscilloscope horizontal controls for a writing rate of $20 \mu \mathrm{sec}$ per division.
c. Connect the oscilloscope vertical amplifier input to the PULSE NEG terminals.
d. Connect the oscilloscope sync to the Type 1391-B DIRECT SYNC terminals.
e. Observe the $50-\mu \mathrm{sec}$ negative pulse on the oscilloscope. It should appear as shown in Figure 2.6B.
f. Now move the oscilloscope vertical input connection to the START terminal. Note the presence of a 5 -volt positive start pulse corresponding to the leading edge of the main pulse (Figure 2.6C).
g. Move the oscilloscope vertical input connection to the STOP terminal, and note the presence of a 5 -volt positive stop pulse as shown in Figure 2.6D. Note at both START and STOP terminals a negative pulse at the end of the sweep. Move the PULSE DURATION dial and note the motion of the stop pulse corresponding to the dial reading. The start pulse moves when the PULSE DELAY dial is moved.

2.8.2 EXTERNAL POSITION.

a. Move the oscilloscope vertical input connection back to the PULSE POS terminal, and, if possible, set the oscilloscope for $\mathrm{d}-\mathrm{c}$ input.
b. Set the PULSE START STOP TRIGGERS switch to the EXT position.
c. Tap first the START and then the STOP terminal with a piece of metal held in the hand. The pulse should start and stop with each tap. In this manner, pulses can be produced by any external trigger generator.
d. To use the delay circuit to time the main pulse, proceed as directed in steps e through h below.
e. Set the oscilloscope and PULSE START STOP TRIGGERS switch as indicated in steps a and b above.
f. Connect a jumper wire from the DIRECT SYNC OUT terminal to the START terminal and another from DELAYED SYNC to STOP terminal.
g. Note that a $50-\mu \mathrm{sec}$ pulse, corresponding to the $50-\mu \mathrm{sec}$ delay interval, is produced (Figure 2.5 B). Now vary the time delay settings from $1 \mu \mathrm{sec}$ up to about $90 \mu \mathrm{sec}$ and note that pulse duration is controlled by delay.
h. This connection, in which the delay circuit is used to control pulse duration, permits the production of pulses up to 1.1 seconds in duration. To produce such a pulse, set (if possible) the oscilloscope writing rate at 0.2 sec per division. Disconnect
the driving oscillator from the PRF DRIVE terminals. Set the TIME DELAY MICROSECONDS dial to 11.00 , and the TIME DELAY RANGE switch to $100 \mu \mathrm{sec}-1 \mathrm{sec}$. Now either flip the RESET switch or tap the PRF DRIVE terminal quickly, and note the production of the long pulse.
2.8.3 INTERNAL + EXTERNAL POSITION. This position permits externally produced trigger pulses to be added to the start and stop triggers generated in the pulse timing circuits. To test the operation of this switch position, generate a double pulse as follows:
a. Build and connect the adder circuit shown in Figure 2.8.
b. Set the SWEEP TRIGGER switch to DELAYED.
c. Connect the oscilloscope vertical deflection input to the PULSE POS terminals.
d. Connect the oscilloscope synchronizing terminal to the DIRECT SYNC OUT terminals.
e. Set the PULSE START STOP TRIGGERS switch to EXTERNAL and move the DELAY MICROSECONDS dial from its standard position, noting that the delay circuit controls the duration of the pulse.
f. Set the PULSE START STOP TRIGGERS switch to INTERNAL + EXTERNAL, with the pulse timing controls in standard positions. Note the presence of a double pulse. The delay and duration of the second pulse can be varied by means of the PULSE DELAY and DURATION controls.

Section

CALIBRATION PROCEDURE

3.1 INTRODUCTION. Calibration and readjustment procedures are given in the order of signal progression through the instrument. Paragraph 3.2 lists the test equipment necessary to carry out the calibration of the various circuits, and paragraphs 3.3 through 3.6 discuss the calibration and readjustment procedures necessary in each circuit.

It is hardly likely that a complete calibration, such as that given every new instrument in the General Radio laboratory, will ever be necessary. Usually few, if any, adjustments are necessary when a tube or circuit component is replaced because of failure. Gradual degradation in tube characteristics with use may require retouching of the screwdriver adjustment common to all ranges in the sweep or delay circuit. Also, some unpredictable shift in the values of resistors or capacitors in range timing circuits will generally appear as a change in the calibration of one range. Only the adjustment for that range must be set, and only the relevant paragraph must be consulted, along with paragraph 3.2.

A common adjustment is the range minimum adjustment (R238) in the delay circuit, which may require readjustment when V203 is replaced. This adjustment, discussed in paragraph 3.4, is common to all delay ranges. An equivalent adjustment may be necessary in the sweep circuits to restore the calibration of the pulse-delay dial when either V303 or V309 is replaced. The controls requiring readjustment are the pulse duration and delay minimums R412 and R411. (Refer to paragraph 3.5.2.) Other adjustments are those used to correct for component tolerances in the R-C time constants. Such adjustments must be made only when the components themselves drift (unlikely) or are replaced.
3.2 TEST EQUIPMENT. The type and quantity of auxiliary test equipment necessary for recalibration depend entirely on the accuracy desired, the complexity of the recalibration, and, to some extent, on the range being recalibrated. This equipment can range from a cathode-ray oscilloscope, audio oscillator, and ac-dc multirange meter to the full series of time-measuring equip-
ment listed below. The equipment listed below is adequate for complete recalibration of the instrument.
(1) Oscilloscope - Tektronix 530 or 540 series, or equivalent.
(2) Crystal-controlled time-marker generator - Tektronix 180, Dumont 300, or equivalent producing time markers from 1 to $10,000 \mu \mathrm{sec}$. All of these timing markers should be simultaneously available at the panel terminals of the marker generator.
(3) Time-interval measuring system - While not an absolute necessity in the recalibration of the instrument, a time-interval meter simplifies the calibration of the longer sweeps, delay intervals, and pulse durations. This time-interval meter should operate from two triggers, one to start and one to stop the timeinterval measurement. Ideally, it should resolve 1 - or $0.1-\mu \mathrm{sec}$ input pulses. The time-interval meter will facilitate the measurement of the longer delays, sweeps, and pulses, without the necessity of viewing the very slow transients arising from the long delays on an oscilloscope. Possible instruments for use in this application, if available, are the Berkeley 5571 and 5510, Hew-lett-Packard 521-A, 522-B, or 524-B plus 526-B, or the LFE 501.

Additional test equipment includes an audio oscillator (General Radio Type 1210, 1302, or equivalent) needed to set the prf, and an a-c vacuum-tube voltmeter to measure either the rms or peak value of the input voltage.

3.3 CALIBRATION AND ADJUSTMENT OF INPUT CIRCUITS.

3.3.1 ADJUSTMENT OF R104.

a. Connect the audio oscillator (set to 10 kc , output at least 1 volt) to the PRF DRIVE terminals.
b. Connect the oscilloscope vertical amplifier input to the DIRECT SYNC OUT terminals.
c. Center the TRIGGERING LEVEL control.
d. Set the TRIGGER SELECTOR switch to POS GOING AC, and observe the direct synchronizing signal as the audio oscillator gain-control setting is decreased.
e. Adjust R104 so that the direct synchronizing pulse is formed with minimum voltage input. With correct adjustment, the input voltage will be less than 0.3 volt rms.
3.3.2 ADJUSTMENT OF C102.
a. Set the TRIGGER SELECTOR switch to POS GOING AC.
b. Set the SWEEP TRIGGER switch to DIRECT.
c. Connect the oscilloscope probe to the center (output) terminal of S203, the SWEEP TRIGGER switch.
d. Adjust C102 for a trigger amplitude of 5 to 6 volts peak-to-peak.

3.4 DELAY CIRCUITS.

3.4.1 ADJUSTMENT OF THE TIME DELAY MICROSECONDS DIAL MINIMUM AND MAXIMUM. This adjustment should be necessary only when either V203, V204, or V205 has been replaced. The time delay between the direct and delayed synchronizing pulses must be measured accurately, and should be within 0.3 percent.

There are three different ways to measure the time delay between the direct and delayed synchronizing pulse. The first two ways require the use of only the high-speed oscillograph and the precision time-marker generator. The third method, most convenient for the three longer delay ranges, requires the use of the time-interval measuring device (refer to paragraph 3.2).
3.4.1.1 First Method. In this method, the time-marker generator is used to set the prf of the Type 1391-B at a rate considerably slower than the period corresponding to the delay range to be checked. A second output from the time-marker generator is presented to calibrate the oscilloscope sweep. An electronic switch that will simultaneously present the delayed synchronizing signal and the timing markers to the oscilloscope is recommended. Timing markers can also be presented if they are placed on the oscilloscope gate input terminals either to brighten or to blank the oscilloscope sweep to display the marker interval. The position of the direct synchronizing pulse relative to the timing markers is carefully determined and the oscilloscope probe is moved to the DELAYED SYNC terminal. The delay dial calibration can then be checked at the cardinal points represented by the timing markers. This procedure is the only effective means for calibration of the lower two delay ranges, 1-10 and 10-100 $\mu \mathrm{sec}$.
3.4.1.2 Second Method. In the second method, the timing-marker generator is used to set the prf of the Type 1391-b as in the first method, but the higher-frequency timing markers corresponding to the cardinal points on the delay dial are fed to the appropriate COINCIDENCE DRIVE terminals and the coincidence system is adjusted so that coincidence is established only when the coincidence gate is produced at the same time as one of the marker pulses. Since there is a finite rise time of about $0.2 \mu \mathrm{sec}$ at the early edge of the coincidence gate, the correct alignment of the early edge of this gate with a given marker pulse to light the DELAY MONITOR lamp will permit sufficiently accurate calibration only above $100 \mu \mathrm{sec}$, and therefore this method becomes effective only on the third range and above. If, for example, it is desired to calibrate the $100-\mu \mathrm{sec}-\mathrm{to}-1-\mu \mathrm{sec}$ range at $100-\mu \mathrm{sec}$ cardinal points, the timing-marker generator should set the prf at 100 cps , and $100-\mu \mathrm{sec}$ calibration markers should be fed to the COINCIDENCE DRIVE terminal corresponding to marker polarity. The COINCIDENCE GATE DURATION control should be set at a value considerably less than $100 \mu \mathrm{sec}$, say 20 . Now suppose
the TIME DELAY MICROSECONDS dial is rotated so that the actual delay is $190 \mu \mathrm{sec}$. The second $100-\mu \mathrm{sec}$ marker pulse from the timing generator will lie in the center of the coincidence gate, and the DELAY MONITOR lamp will glow. As the delay dial setting is increased to exactly $200 \mu \mathrm{sec}$, the leading edge of the coincidence gate will move out from under the $100-\mu \mathrm{sec}$ marker and the lamp will go out. It is apparent, therefore, that the accurate calibration point is attained when the delay dial is moved from higher to lower delay reading at the point where the DELAY MONITOR lamp just lights. For the calibration of longer delay ranges, correspondingly longer time-duration coincidencegate settings can be used. The accuracy, determined by rise time of the coincidence gate and the ignition voltage of the DELAY MONITOR lamp, increases.
3.4.1.3 Third Method. A time-interval measuring system, capable of being operated by the direct and delayed synchronizing signals, provides a convenient method of calibration. Suppose the time-interval meter is capable of resolving and counting $1-\mu$ sec pulses. The delay circuit can be calibrated to an accuracy of 0.1 percent at 1 msec by the plus or minus one-count limitation. Four decade registers are necessary for this precision at the low end of a range. The procedure is to connect the start terminals of the time-interval meter to the DIRECT SYNC OUT terminals of the Type 1391-B, and the stop terminal to the DELAYED SYNC OUT terminal of the Type 1391-B. A simple trigger, derived on the longer ranges simply by the tapping of a finger against the PRF DRIVE terminal or by the use of a switch and a battery, initiates a "single stroke" delay-circuit action and opens and closes the timing gate of the time-interval meter at the delay period. The delay then reads directly in the decade registers of the interval counter.

By any one of the above three methods, the accuracy at both ends of the TIME DELAY MICROSECONDS dial should first be established for two or three ranges. If the minimum or maximum is consistently off on all these ranges, then either the delay minimum control (R238) and/or the delay maximum control (R236) should be readjusted. This readjustment should be accomplished on the $10-100-\mathrm{msec}$ range. It is necessary to set both the minimum and the maximum controls for correct value at dial readings of 200 for the minimum and 1000 for the maximum. Having calibrated the $10-100-\mathrm{msec}$ range in this manner, check overall dial linearity by checking the delay at cardinal dial points, and test the other ranges to establish their accuracy. If only one range deviates from the correct readings, adjust the appropriate potentiometer (R228 to R233). Note that the $100 \mathrm{msec}-\mathrm{to}-1-\mathrm{sec}$ range has two adjustments: R233 adjusts the time constant correctly to produce the accurate maximum delay at 1 sec and R232 adjusts the amplitude of the initial voltage step for the correct dial reading at 100 msec . If V203 has been replaced, it may be necessary to readjust $C 222$ of the $1-10-\mu \mathrm{sec}$ range to restore dial calibration due to small changes in stray capacitance.
3.4.2 COINCIDENCE GATE ADJUSTMENTS. If, upon replacement of V206, it is found that either the minimum or maximum coincidence gate duration departs intolerably far from 3 or 1000 $\mu \mathrm{sec}$, adjust R255, the $1000-\mu \mathrm{sec}$ adjustment, or R249, the $3-\mu$ sec adjustment. Usually only a cathode-ray oscillograph connected at TP204 is necessary to establish the desired measurement accuracy. Of course, a more precise adjustment of either the minimum, maximum, or any point between can be made if higher accuracy is desired. It is necessary to repeat the 3 - and

GENERAL RADIO COMPANY

Figure 3.1 Adder Circuit Diagram
then the $1000-\mu \mathrm{sec}$ adjustments more than once to establish both accurately, since there is a slight interaction.

3.5 SWEEP- AND PULSE-TIMING ADJUSTMENTS.

3.5.1 GENERAL. The sweep- and pulse-timing adjustments are discussed together here because the characteristics of the sweep control, the accuracy of the pulse-timing scales, and the controls corresponding to the previously described delay minimum and maximum controls are the calibration controls that determine the minimum pulse delay and the maximum pulse duration and delay.

The sweep and pulse-timing adjustments can all be made by the time-measuring techniques described in paragraph 3.4.1. Here it is necessary to measure both sweep duration and pulse duration, and the easiest way to do this is to build a differentiator and adder network for the oscilloscope to present the sweep gate and pulse transitions simultaneously. The adder and its connections are shown in Figure 3.1. Pulse duration, delay, and sweep duration can be adjusted by observation of the pulses produced at the beginning and end of the sweep gate and main pulse. In order to register the marker showing the beginning of the sweep with the timing-markers, the sweep can be triggered by the delay circuit and made coincident with a specific timing marker.
3.5.2 OVER-ALL SWEEP AND PULSE-TIMING ADJUSTMENT. The $600-\mu$ sec sweep range is used for the initial adjustment of sweep duration and for synchronization of the readings of the delay and duration dials. Make sure that the duration and delay readings have a common error on several ranges before readjusting those calibration controls common to all ranges. An error in pulse duration or delay appearing on only one range can be eliminated by adjustment of that range's sweep time constant only. If an error in pulse duration or delay appears on all ranges, proceed as follows:
a. Construct the R-C network shown in Figure 3.1.
b. Connect this network to the PULSE NEG and GATE NEG terminals.
c. Mix the output from the R-C network with $100-\mu \mathrm{sec}$ timing markers by means of an additional network or a dual-channel oscilloscope attachment.
d. Synchronize the Type $1391-\mathrm{B}$ with the $10,000-\mu \mathrm{sec}$ timingmarker output and obtain a coherent pattern on the oscilloscope.
e. Using the DELAY controls, align the start of the sweep with one $100-\mu$ sec timing pulse.
f. Set the PULSE DELAY to 1.0 and the PULSE DURATION to 4.0 .
g. Center R408 (DURATION MAX).
h. Adjust R333 ($600 \mu \mathrm{sec}$) to set the end of the pulse to the $500-\mu$ sec mark.
i. Adjust R352 (SWP AMP) to set the end of the sweep to $600 \mu \mathrm{sec}$.
j. Adjust R411 (POS MIN) to set the start of the pulse to the $100-\mu$ sec mark, and then rotate the PULSE DURATION dial to exactly zero, withour disturbing the PULSE DELAY dial.
k. Adjust R412 (DUR MIN) to set the end of the pulse to coincide with the start of the pulse at the $100-\mu \mathrm{sec}$ mark. (Both pulses will disappear.)

1. Now set the PULSE DURATION dial to 5.00 and advance the TIME DELAY MICROSECONDS dial to read 5.50.
m. Adjust R407 (POSITION MAX) to set the end of the pulse to coincide with the start of the pulse at $500 \mu \mathrm{sec}$. (Both pulses will disappear.)
n. If any adjustments required extensive resetting, repeat the procedure; maximum adjustments have a second-order effect on the minimum voltage and vice versa.
3.5.3 300- μ SEC SWEEP ADJUSTMENT. Having calibrated or checked the $600-\mu \mathrm{sec}$ range calibration, set the end of the $300-\mu \mathrm{sec}$ sweep to the $300-\mu \mathrm{sec}$ mark by adjusting R332 (300 $\mu \mathrm{sec})$. Use an oscilloscope writing rate of $50 \mu \mathrm{sec}$ per division.
3.5.4 1200- μ SEC ADJUSTMENT. As in paragraph 3.5.3, adjust R334 (1200 $\mu \mathrm{sec}$) to set the end of the sweep to coincide with the twelfth $100-\mu \mathrm{sec}$ mark after the start of the sweep.

Main sweep- and pulse-timing adjustments are now complete, and the tracking of the $x 10, \times 10^{3}$, and $\times 10^{4}$ ranges can be checked by means of a marker generator or, for the longer ranges, a time-interval counter operated by the pulse or sweep gates. A failure on the part of either the $\times 10, \times 10^{3}$, or $\times 10^{4}$ range to track the $x 10^{2}$ range within two percent indicates that the value of a timing capacitor has changed, and the capacitor of the faulty range should be padded or replaced. If all three ranges fail to track by about the same amount, the timing capacitor of the $\times 10^{2}$ range (C323) should be replaced or padded.

3.5.5 CALIBRATION OF THE $3-$, $6-$, AND $12-\mu$ SEC RANGES.

a. First make tests to establish the accuracy of pulse timing on the $600-\mu \mathrm{sec}$ range (refer to paragraph 3.5.2).
b. Set the controls as follows:

Set	To
SWEEP MULTIPLIER	1
SWEEP DURATION MICROSECONDS	6
PULSE DURATION	$4.00 \mu \mathrm{sec}$ (Center Scale)

c. Connect a $10-\mathrm{kc}$ signal from the marker generator to the PRF DRIVE terminals, and use $1-\mu \mathrm{sec}$ oscilloscope markers from the marker generator.
d. Center R330 ($6 \mu \mathrm{sec}$) and adjust C321 to obtain a pulse duration of $4.00 \mu \mathrm{sec}$ at half amplitude.
e. Set the SWEEP DURATION to 3 and adjust for a $2-\mu \mathrm{sec}$ pulse using R329 ($3 \mu \mathrm{sec}$).
f. Set the SWEEP DURATION control to 12.00 and adjust the half-amplitude pulse duration to $8 \mu \mathrm{sec}$ with R331 ($12 \mu \mathrm{sec}$).
g. Set SWEEP DURATION MICROSECONDS control to 3. Set PULSE DURATION dial to zero, and adjust C417 for zero-duration pulse.

NOTE

If the $6-\mu$ sec sweep cannot be adjusted to produce a $4-\mu \mathrm{sec}$ pulse with C321, or if R332 and R329 are far
from center, reset C321 and repeat the $\sigma-\mu$ sec adjustment (R 330), and readjust the $3-\mu \mathrm{sec}$ and $12-\mu \mathrm{sec}$ ranges.

Generally, when V303 is replaced, only C321 must be retouched to restore proper operation to the $3-, 6$ - and $12-\mu \mathrm{sec}$ ranges.

3.6 POWER-SUPPLY ADJUSTMENTS.

3.6.1 TEST EQUIPMENT. The minimum test equipment necessary for the correct adjustment of the power supply includes:
a. a 300-v battery or regulated power supply set for 300 v ,
b. a $5-$ or $10-\mathrm{amp}$ Variac $^{(8)}$ autotransformer or equivalent,
c. an accurate a-c voltmeter to set line voltage,
d. a wattmeter with 500 -watt scale,
e. a volt-ohmmeter with 20,000 -ohm/volt sensitivity (Weston 772 Analyzer or equivalent).
f. additional apparatus, useful though not absolutely necessary, includes either a wave analyzer (General Radio Type 736-A or equivalent) or a Distortion and Noise Meter (General Radio Type 1932-A or equivalent).
3.6.2 INPUT POWER CHECK. The Type 1391-B requires 420 watts at 115 volts, 60 cycles.

3.6.3 300-VOLT REGULATOR ADJUSTMENT.

a. Measure the 300 -volt power supply at pin 2 of plug PL401
or SO602 (yellow wire). It should read 300 ± 1 volts; if not, adjust R612.
b. To check the compensation adjustment, buck most of the 300 volts out with either a 300 -volt battery or a second 300 -volt regulated power supply. This will permit the voltmeter to be used in differential connection on its 1 - or 5 -volt scale. (The $\pm 300-$ volt Type 1391-B supply can be offset by either 1 or 2 volts to permit the meter to read upscale.)

Now vary the line voltage to the Type 1391-B over the 105-125 (210-250) volt range. Note that as line voltage increases 10 percent the regulator output decreases by 0.5 to 1 volt and vice versa. If the compensation curve is not symmetrical about the 300 -volt center, readjust R607 to make it so. R612 might need readjustment to maintain correct output voltage.
3.6.4 -150-VOLT ADJUSTMENT. R618 should be set to produce -150 volts output at pin 6 of plug PL401, with input voltage set at 115 volts.
3.6.5 -400-VOLT ADJUSTMENT. Adjust the PULSE DURATION and sweep timing controls to produce a 25 -millisecond pulse at a $20-c p s$ repetition rate. Set the PULSE AMPLITUDE control to maximum and set the output impedance for the highest-amplitude negative pulse whose negative edge can be seen on the screen. Set R618 for minimum line-frequency ripple on the "bottom" of this pulse as the line voltage is varied from 105 to 125 volts.

Section 4
DETAILED CIRCUIT DESCRIPTIONS
4.1 GENERAL. The following circuit descriptions are presented in much the same order as that taken by a signal, beginning with the input circuits. For convenience in maintenance, the components in each circuit group are numbered in the same series, as shown in the following list:

Circuit	Tubes and Components No.		
		Schematic Diagram	

4.2 INPUT CIRCUITS. (See Figure 5.1.) The trigger circuit consisting of dc amplifier V101A and Schmitt circuit V102 produces the brief direct trigger pulse, and maintains its slope and amplitude constant irrespective of the rate of change of input voltage at the PRF DRIVE terminals. The amplifier V101A is connected to the PRF DRIVE binding post through blocking capacitor C111 and the symmetrical limiter circuit R101, D102, and D103. For dc operation, C111 is shorted out by S101. V101A serves as a d-c amplifier for the Schmitt circuit, V102. If V102A is in conduction, its plate current will maintain the cathode voltage for both sides at about 95 volts. If the plate voltage of V101A is below 90 volts, the circuit is stable and V102A remains in conduction. Now suppose the plate voltage of V101A is increased until V102B begins to conduct. The decreasing plate voltage of V102B reduces grid voltage on V102A and therefore reduces the cathode voltage, making V102B conduct even more heavily. This positive feedback quickly turns V102A off and V102B on. When the plate voltage of V101A is again reduced to below 95 volts, V102A is sufficiently below its cutoff voltage so that the grid voltage of V102B must be reduced to below 90 volts before V102 switches back to the original state. Therefore the circuit exhibits a hysteresis effect.

The bias establishing the quiescent plate current for V101A is normally set in the center of this hysteresis loop. A positive-going voltage at the grid of V101 is amplified and swings V102B into its regenerative region, turning it off and producing a positive transition at its plate. The TRIGGER SELECTOR switch is shown in the positive-going position, so that this wave front is differentiated by C103 and R112 to a positive trigger that momentarily switches V103A on.

R103 and R104 control the bias on V101A, establishing the center of the hysteresis loop. An adjustment of R103, the TRIGGERING LEVEL control, can:
a. permit V102 to switch on either a small positive or a negative input pulse. (Note that in the optimum sensitivity adjustment, the a-c component of a brief input pulse may not be adequate to cause the hysteresis loop to be traversed.)
b. optimize the sensitivity of the trigger for small signal inputs. (This is the normal setting.)
c. select an exact voltage at which V102 will switch, thus permitting the exact sensing of zero crossing for large signals.

The pentode section of V103 is turned on by the positive trigger generated by the Schmitt circuit on the selected zero crossing, either positive- or negative-going. A network in the plate of V103A produces the $0.10-\mu \mathrm{sec}, 20$-volt negative direct trigger. A longer-duration negative trigger of somewhat higher amplitude, developed across L101 and R113, is capacitively coupled through the $0.2-\mu \mathrm{sec}$ delay line DL101 to the grid of V103B. V103B is normally conducting at zero bias, and, when turned off by the negative trigger, produces a 100 -volt positive sync, about $1 \mu \mathrm{sec}$ in duration, which is fed to V104A, a cathode follower capacitively coupled to the DIRECT SYNC OUT terminals. DL101 provides a $0.2-\mu$ sec time delay in the direct sync channel. The total delay accumulated between the PRF DRIVE and DIRECT SYNC OUT terminals is about $0.4 \mu \mathrm{sec}$. This delay permits the delay and sweep circuits to be precisely calibrated at their minimum values.

4.3 DELAY CIRCUITS.

4.3.1 GENERAL. For convenience, the delay circuits can be divided into two groups; the main delay circuit, across the top of Figure 5.2, and the coincidence circuit system, the line of circuits at the bottom of Figure 5.2. Idealized waveforms are shown in the time diagram accompanying the block diagram for these circuits (Figure 1.4).

The main delay circuit is aloop with a monostablecharacteristic. The loop action is started by the direct trigger, which opens a bistable gate and starts a sweep circuit. When the sweep voltage equals the $\mathrm{d}-\mathrm{c}$ voltage set by the TIME DELAY MICROSECONDS control, the amplitude comparator circuit switches, generating a trigger. The trigger is amplified and resets the bistable gate, ending the sweep. The loop then remains quiescent until another direct trigger is received. Since the delay sweep lasts from $1 \mu \mathrm{sec}$ (minimum) to one second (maximum), the circuits up to the amplitude comparator are direct coupled.
4.3.2 DELAY GATE. The delay gate is a bistable circuit. One gate tube (V201) is normally on, the other (V202) normally off. The supply voltage for the gate is +55 volts and -150 volts with respect to ground; therefore the plate potential of the conducting gate tube is negative with respect to ground by about 15 volts. The gate is opened by the negative direct trigger from the input circuit, and switches regeneratively to turn V201 off and V202 on. The fall in voltage at the plate of V202 turns V203 off and starts the sweep.
4.3.3 DELAY SWEEP GENERATOR. V203 is normally in conduction, with its grid slightly positive. Plate load resistors, ranging from 500 kilohms to five megohms, selected by the DELAY RANGE switch, drop almost the entire power-supply voltage at the plate of V203 when it is on. When V203 goes off, the timing capacitor appropriate to the delay range charges through the selected resistor. Thus the delay sweep is a portion of the
exponential voltage produced by the charging of a capacitor through its associated resistor toward the supply voltage. The slope is correctly set for the selected range by a potentiometer, for all ranges except one. R232 provides an adjustable step of initial plate voltage on the $1-\sec$ range to compensate for the lower starting plate voltage due to the five-megohm charging resistor on this range. R283 provides a step to speed up the beginning of the $1-10-\mu \mathrm{sec}$ range to overcome the effects of stray capacitance, while on the same range C 222 provides an adjustment to permit exact duplication of capacitance in the presence of strays for each instrument. The rising exponential voltage produced by the switching action of V203 is coupled by a cathode follower (V204A) to the grid (pin 2) of V205A, the delay amplitude comparator.
4.3.4 DELAY AMPLITUDE COMPARATOR. V205 is a Schmitt amplitude-comparison circuit. A d-c reference voltage, established by the DELAY MICROSECONDS control, is used to translate its triggering $\mathrm{d}-\mathrm{c}$ level from a minimum of about 15 volts over a hundred-volt span. When the DELAY MICROSECONDS control is set at mimimum, the sweep must rise only about 10 volts before the amplitude comparator triggers; however, with the control at maximum, the voltage must rise to over 100 volts. The minimum and maximum voltages are set by R236 and R238 to give the correct delay readings on the $10-\mu \mathrm{sec}-100-\mu \mathrm{sec}$ range. Obviously, if the delay sweep were linear and if the voltage established by the DELAY MICROSECONDS control were linear as a function of angle, the DELAY dial reading would be linear. It is apparent that the delaying sweep is not linear, being one third of a complete exponential change curve at its maximum value. Due to the current drawn by V205 and R219 from the arm of the delay potentiometer R237, the change in voltage with angle is nonlinear and closely matches the exponential, resulting in a linear delay scale.
4.3.5 DELAY RESET TRIGGER STAGE. After the lapse of time determined by the sweep and the amplitude-comparison reference voltage, V205 triggers, the left side goes on and the right side goes off. The regenerative rise in voltage at the right-hand plate of V205 causes V204B, the reset trigger amplifier, to conduct, producing a negative trigger, which is fed to the grid of V202, turning V202 off and terminating the sweep. This reset pulse is also fed through C234 to start the coincidence gate. The monostable character of the main delay loop should now be apparent. If, for some reason, the delay reset trigger produced by the amplitude comparator fails to reach and reset the gate, no second trigger can be produced by the amplitude comparator, and the sweep voltage will rise to a maximum value set by the grid current in V204A. The loop will be quiescent in this "locked out" position. The action of the circuit can then be initiated only by artificial reset trigger injected at the grid of V202. This is done by means of the RESET switch, S202, which momentarily removes the bias from $V 204 \mathrm{~B}$, producing the negative pulse to restore the loop to its normal state. The circumstances under which the "lock out" conditions usually occur are:
a. upon warmup, if V202 comes on first. (This can be permanently remedied by reversal of V201 and V202.)
b. when the delay circuit is used as a frequency divider and/or when the delay control is set to produce a delay nearly equal to the input period.

4.4 COINCIDENCE CIRCUITS.

4.4.1 GENERAL. The $3-1000-\mu \mathrm{sec}$ monostable gate is opened by the negative delay reset trigger. In normal operation the positive early transition of this gate turns on the coincidence amplifier.

The pulse of plate current of the coincidence amplifier is inverted by T201 to drive the delay trigger generator stage into conduction. The delay trigger generator develops the delayed trigger in an inductor-diode pulse-forming network in its plate. This circuit, the following pulse amplifier, and cathode follower are identical in design to the equivalent circuits of the input system explained in paragraph 4.2. The delayed trigger is fed to one side of the SWEEP TRIGGER switch (S203), and the direct trigger to the other. Operation of this switch causes the sweep to be started by either the delayed or the direct trigger.

When the coincidence system is to be used for time selection as described in paragraph 1.3.3, the sum of the $3-1000-\mu \mathrm{sec}$ gate from V206 and an input pulse from J201 (POS) or J205 (NEG) is required to turn the coincidence amplifier stage on. The coincidence amplifier bias is increased as the COINCIDENCE SENSITIVITY control (R256) is turned counterclockwise. The $3-1000-\mu \mathrm{sec}$ gate alone can not switch V207A into conduction when the sensitivity is reduced. The combination of the gate and positive pulses at the junction of R289 and R290 will switch V207A on and produce the delayed synchronizing signal.
4.4.2 COINCIDENCE GATE CIRCUIT. The right-hand side of the $3-1000-\mu \mathrm{sec}$ monostable gate, V206B, is normally conducting with its cathode near -80 volts and its grid slightly positive with respect to cathode. The plate current of this tube, flowing through R256, R257, and R249 to ground, produces a bias voltage, which normally keeps the left-hand side of V206A off. With this tube off, its cathode is slightly negative with respect to ground because of the forward drop of D205. The negative delay reset trigger starts the regenerative action of the monostable gate, during which the right-hand side of V206B goes off, turning the left-hand side on. After switching, the grid of the lefthand side is at ground potential and its cathode is slightly positive with respect to ground; thus D205 is a high resistance, and R251 is a feedback resistor, which stabilizes the plate current of V206-left. The "off" time of V206-left depends on its plate swing and the r-c time constant controlled primarily by C235, R254, and R255. The "off" time of V206-right is controlled as R253 varies the plate swing. C253 and R288 alter the initial shape of the timing grid waveform for V206-right to permit smooth timing down to 3 microseconds. When the timing r-c combination has discharged enough for the right-hand tube again to go into conduction, its plate voltage begins to fall, lowering the grid voltage on the right-hand side, and the circuit regenerates and returns to its original stable state, terminating the gate. The gate is directly coupled to the grid of the coincidence amplifier through R289. The resistive adder is compensated by C 254 .
4.4.3 COINCIDENCE AMPLIFIER. When the $3-1000-\mu$ sec gate is off, grid 2 of V207A is about -10 volts; while it is on, the grid is near ground potential. R265 in the cathode of V207A is the COINCIDENCE SENSITIVITY control, producing from 3 to 33 volts of additional bias for this stage. In the NORMAL position, the 3 volts of bias alone will not hold the stage in cutoff when
its grid rises to ground. When the COINCIDENCE SENSITIVITY control is moved counterclockwise away from the NORMAL position, the circuit is prepared for coincidence operation. During coincidence operation, the same rapid rise of plate current in V207A as that produced by the early transition of the $3-1000-\mu \mathrm{sec}$ gate must be obtained; thus fast triggers are necessary to operate the coincidence circuit. Their duration is relatively unimportant but their rise time should exceed $0.2 \mu \mathrm{sec}$ over a 5 -volt interval. 4.4.4 DELAY TRIGGER AND SYNC GENERATORS. The network in the plate of V208A shapes the negative delayed trigger. This pulse is amplified and inverted in V208B to form a positive sync applied to V207B, the cathode-follower output stage. The presence of the delayed sync at the output terminal is indicated by a stage comprising half of V104B. The positive delayed synchronizing pulse causes this stage to draw grid current, charging C251. The discharge of C251 through R279 in the time between pulses keeps V104B off and causes V209, the DELAY MONITOR lamp, to light.

4.5 SWEEP CIRCUITS.

4.5.1 GENERAL. The sweep circuits consist of a bistable control multivibrator, sweep generator, amplitude comparator, and reset trigger amplifier. This loop is identical in configuration to that in the delay circuits. The only difference is that the sweep is generated by a bootstrap-type sweep circuit, which produces a linearly rising sawtooth rather than the simple exponential form produced in the delay circuits. The bootstrap-type sweep generator produces a positive-going, linearly rising sawtooth, which is fed through a cathode follower to the positive sweep output terminals, and from this cathode follower through an amplifier inverter to a negative-output cathode follower for the negative phase. Also, a single-tube amplifier-inverter stage is provided to produce negative and positive gates during the sweep time.
4.5.2 SWEEP CONTROL GATE AND SWEEP GENERATOR. The sweep gate multivibrator comprises V301 and V302 and their associated components. The low plate voltage of V301, which is normally on, keeps V302 beyond cutoff. The plate voltage of V302 is very nearly equal to the positive power supply voltage (55 volts). Therefore, both V303, the sweep generator, andV309, the keyed clamp, are in conduction.

When a negative sweep trigger is received, V301 is turned off and the resulting regenerative action causes V302 to switch on rapidly. When V302 comes on, V303 and V309 are turned off, and the sweep is started. Sweep timing is controlled by the r-c networks in the plate circuit of V303. Resistance is controlled by S301, the SWEEP DURATION switch. Capacitance is controlled by the SWEEP MULTIPLIER switch, S302. In Figure 5.3, the SWEEP MULTIPLIER switch is shown set to 1 , the SWEEP DURATION switch to $3 \mu \mathrm{sec}$. Thus the sweep-timing r-c network is C321, R323, and R329. Initially, with V303 in zero-bias conduction, its plate voltage is very nearly at ground. The voltage at grid 2 of V304A is low and its cathode voltage is only slightly positive with respect to the grid. When V303 goes off, the selected sweep-range capacitor begins to charge through its associated resistance network towards +300 volts. The grid voltage of the cathode follower rises and the cathode follows. The cathode resistance of V304 with V309 off is very high, so that the gain of this stage as a cathode follower ap-
proaches unity. The rising cathode voltage is coupled through C330 and drives the cathode of D303 positive. D303 opens, and the plate-timing networks for V303 are carried up along with the cathode of V304. If the gain of V304 were exactly unity, a rise of 1 volt at the grid of V304 would cause the same rise at the cathode of V304 and an equivalent increase in B-plus, and the current through the timing resistor would be constant. If this happened, the sweep would be ideally linear. The small departures of the sweep with linearity are due to small departures from a cathode-follower gain of unity. A very large resistance is thus needed in the cathode of V304 during the active portion of this cycle. The linearly rising sweep voltage always attains an amplitude of about 140 volts at the grid of V306, the sweep amplitude comparator. The d-c reference voltage for this stage is fixed to establish the correct sweep amplitude. When the sweep has attained the 140 -volt amplitude, V306 triggers, producing a voltage rise at the plate. This causes V305A to conduct, producing the negative reset trigger that turns V302 off and V301 on. The sweep gate is now reset to its normal condition. The sweep generator is brought back into conduction, the keyed clamp is turned on, and the sweep-timing capacitor is discharged. The conducting sweep generator can quickly reduce the voltage across the sweep-timing capacitor to a small value, but the voltage at the cathode of the cathode follower, V304, must be reduced by the discharge of strays and by the replacement of charge on the bootstrap coupling capacitor (C330) by V309. To increase recovery time, this voltage must be brought back to its quiescent value as quickly as possible; therefore, the plate current of V309 is increased during the discharge period by V307A, the reset cathode follower. The grid of V307A is driven positive by differentiation of the negative sweep voltage at V308B. This voltage spike causes V307 to conduct, and momentarily increases the screen voltage on V309, increasing its plate current during the discharge interval.

The positive sweep at the cathode of V304 is connected to the pulse-timing amplitude comparators to provide timing triggers to start and stop the main pulse. V308A is the output cathode follower for the positive sweep phase. Part of the positive sweep voltage from the cathode of V308 is amplified and inverted by V307B, producing the negative sweep fed to the SWEEP NEG output terminals through cathode follower V308B.

The trailing edge of the negative sweep drives the grid of V310B through C331 to cause the spike of positive voltage at the grid of V310. Grid current charges C331, and the discharge of C331 through R369 cuts V310B off. The rise in plate voltage of V310B ionizes the SWEEP MONITOR lamp V311 and indicates the presence of the sweep at the output terminal.

The grid of V305B is directly connected to the plate of V301 and is thus positive during sweep time. The positive sweep gate is present at the cathode, and an equal negative gate is present at the plate. This push-pull gate waveform is connected through $1-\mu \mathrm{f}$ coupling capacitors C339 and C338 to the GATE output terminals on the panel.

[^0]taneous triggering of both sides of the sweep gate, the sweep fails to reset, this loop will come to an equilibrium condition, where the sweep voltage is high and the sweep amplitude comparator is stable and "locked out". Under these conditions, an artificial reset trigger must be given the sweep control gate multivibrator. This is accomplished by the momentary grounding of the cathodes of V301 and V302 through the RESET switch S202, which causes the sweep gate to reverse its state.

In case of a "lock out" or a failure of V303, V304 will drive the grid of V308A to a high positive value, and the cathode resistors of V308 will be damaged. If V303 fails with V309 conducting, a high current could be drawn through V304 and V309 in series, damaging these tubes. Because of these possibilities, the cathode voltage of V304 must be prevented from remaining in a highly positive condition for a very long time. Protection is afforded by a system in which a network consisting of R319, C337, and R320 establishes a grid voltage normally negative on V310A. If the sweep circuit fails to reset, C337 charges to a voltage sufficiently positive to cause V310 to conduct. When V310 conducts it decreases the grid voltage of V304 and lowers the cathode voltage sufficiently to protect all tubes and components.
4.6 PULSE-TIMING CIRCUITS. The pulse is normally timed by start and stop triggers produced by amplitude comparators V401 and V402 (see Figure 5.4). These comparison circuits are provided with $\mathrm{d}-\mathrm{c}$ reference voltages derived from bleeders in the 300 -volt regulated supply. A calibrated voltage along R409 supplies V401, the start comparator, while an equivalent voltage from R410 supplies the stop comparator, V402. The rising sweep voltage from V304 is connected through precision attenuators to the left-hand grids of V401 and V402, and these stages trigger in turn as the sweep voltage rises to become equal to the reference voltages. Since the sweep is linear, it is necessary that the amplitude comparators draw a constant current from the reference voltage potentiometer. Hence, both the plate and cathode of the comparator circuit are connected to ganged potentiometers, maintaining the supply potential for the comparators constant regardless of the potentiometer setting. The amplitude comr parison take-off voltages are calibrated at both the minimum and maximum voltages for both the PULSE DELAY and DURATION controls by R407, R408, R411, and R412. A small amount of unregulated power-supply voltage is fed across the amplitude comparison voltage pickoff network through R428 and R429. This connection causes a minute variation in the $\mathrm{d}-\mathrm{c}$ amplitude comparison potentials with line voltage, and serves to compensate for small shifts of pulse position due to line-voltage (and therefore heater-potential) changes. As an example of the operation of two amplitude comparators (see Figure 1.6b), suppose the input sweep voltage is 120 volts in amplitude and that the sweep duration is $3 \mu \mathrm{sec}$. Also, suppose it is desired to start the output pulse with $1 \mu \mathrm{sec}$ of delay from the leading edge of the sweep and with a $1-\mu \mathrm{sec}$ duration. Under these circumstances, the PULSE DELAY control will be set at a potential of 40 volts and the PULSE DURATION control 40 volts above the PULSE DELAY control, or at a potential of 80 volts. The start amplitude comparator would then trigger one-third of the way along the sweep at $1-\mu \mathrm{sec}$, and the stop amplitude comparator two-thirds of the way along the sweep at $2 \mu \mathrm{sec}$, resulting in a time between trig-
gers produced by these two circuits of $1 \mu \mathrm{sec}$, the desired pulse duration.

V401 and V402 are Schmitt circuit amplitude comparators similar in form to the equivalent comparators of the delay and sweep circuits. The left-hand section of each tube is normally off, the right-hand section on. When the rising sweep voltage reaches the critical level at which the left-hand side will conduct, the circuit regenerates, turning the right-hand side off and producing a fast-rising positive trigger. This positive trigger is coupled in the start channel via C403 and R421 to the start-channel half of S401, and applied to the grid of buffer tube V403. The resulting negative pulse at the plate of V403 is inverted by T401 and further amplified and shaped by V405, the start amplifier, to a fast negative pulse. This pulse flips V501 over to initiate the pulse. The function of S401 has been described in Section 1. Note that the positive trigger pulse marking the beginning of the pulse is produced across R427 by the plate current of V405, and connected via S 401 to the START binding post. The circuit action and connections of V404 and V406, the stop-channel buffer and amplifier, are identical with those of the start channel.

4.7 PULSE-GENERATING CIRCUITS.

4.7.1 GENERAL. The pulse-generating circuits consist of a bistable multivibrator, identical to those in the sweep and delay circuits. This multivibrator is started and stopped by the triggers derived from the pulse-timing circuits or by externally generated triggers. The bistable multivibrator controls the state of a bistable push-pull pulse amplifier consisting of two power amplifier pentodes, which in turn are directly coupled to a pair of driver amplifiers. These amplifiers drive the output-pulse power output stage. Since the system is both push-pull and direct coupled throughout, the entire circuit is bistable, and the current drawn from all power supplies is constant. The fact that the out-put-power amplifier is itself direct coupled to the panel terminals necessitates the use of a number of different power-supply voltages. These voltages are all unregulated, so there would normally be a variation in pulse amplitude with line voltage; however, V511 regulates the screen-to-cathode potential of the output tubes to decrease the effects of line-voltage variation.
4.7.2 The right-hand side of V501 is normally in conduction so that its plate voltage is about +140 volts with respect to ground. This voltage is translated negative 100 volts by the current flowing in V502, so V501-left is in plate-current cutoff. Since V501-left is off, the grid of driver V503 is positive and V503 is on.

When on, V503 draws about 60 ma , producing a drop of 36 volts across R507 and R545. The plate voltage of V503 is translated negative by the current flowing in V509-left, and driver V505 is held in cutoff. Since amplifier V504 is off, the translated plate voltage of this stage due to plate current in V509-right causes V506 to conduct. The plate current of V506 through R528 and R530 holds the grid of output tube V508 about 25 volts negative with respect to its cathode, and this tube is off. Since V505 is off, V507 will be at zero bias and conducting. These are the quiescent conditions before a start pulse is fed via D501 to turn V501-left on. When this happens, all tubes on both sides reverse their conduction states. Thus V507 will be turned off and V508
will go on to produce a negative pulse. DC connections throughout cause the entire system to be bistable.

With the pulse amplitude switch set for a maximum, output tubes V507 and V508 conduct about 160 ma of plate current. Voltage produced by this current in R548 through R557 constitutes the output pulse. Negative pulses are, for example, produced when the plate current of V508 is turned on in R548 (50 ohms) to produce -7.5 volts with respect to ground (J507) behind 50 ohms. S501 controls output impedance, and consequently output voltage. Note that the link between J507 and J508 can be opened to insert a battery or dc power supply to translate the dc component of the pulse away from ground.

When V507 and V508 are conducting with full screen voltage (maximum pulse amplitude), about 100 ma of the current in the "on" output tube flows through the "on" driver tube. Under "normal" conditions there will be 160 ma in V507 and 100 ma in V506. The additional 60 ma flows in R537.

If pulse amplitude is decreased, means must be provided for maintaining plate voltage on the driver tubes (normally maintained by conduction of the output tubes). Therefore, as the PULSE AMPLITUDE switch setting is decreased, resistors R567 through R575 are switched in from ground to cathodes of V507 and V508, reducing screen voltages and thereby maintaining plate voltages.

Pulse amplitude is reduced by reduction of the screen voltage of the output stage. The screen resistance (R558 through R566) for V507 and V508 is increased to decrease screen voltage. The pulse current is stabilized against line variations and transients by V511, which controls the screen voltage supplied to the amplitude control network. V511 is essentially a cathode follower, whose grid voltage is supplied by the network consisting of R578, R579, V512, V513, and V514 with this network between +300 volts regulated and -550 volts. Suppose, for example, that the line voltage decreases. The -200 volt supply feeding the cathodes of V507 and V508 becomes less negative and the screen voltage on these stages tends to decrease, decreasing plate current. Actually the -550-volt supply becomes less negative by an amount which, when referred to the cathode of V511, exactly equals the change in cathode voltage on V507 and V508. Thus the plate current at these stages tends to remain constant, and is, in fact, affected only by changes in heater voltage.

4.8 POWER SUPPLIES.

4.8.1 GENERAL. All necessary power supplies are in the Type 1391-P2 Power Supply Unit. This supply provides the four
6.3-volt heater supplies and the nine d-c power supplies required. One 10 -conductor cable carries the four heater parrs and the 115 -volt conductors required to operate the blower. The four heaters are identified by the letters P for positive, A for amplitude comparator, G for ground, and N for negative. The A bus is a shielded, low-noise winding that provides heater voltage for the various amplitude comparators of the input, delay, sweep, and pulse-timing circuits. The ground bus is a heater winding at ground potential for tubes whose cathodes are close to ground, and the N bus supplies those tubes whose heaters normally run at 150 to 200 volts negative. The heater connection of each tube is identified by the key letter printed on the heater terminals of that tube in the circuit diagrams, Figures 5.1 through 5.6.

4.8.2 PLATE SUPPLIES.

4.8.2.1 General. All supplies use silicon rectifier circuits. Those providing appreciable power are full-wave doublers, while the low-drain bias supplies are half-wave rectifiers. The plate supplies, in the order shown from top to bottom of the elementary diagram on the back of Figure 5.6, are:
a. a 110 -volt 200 -ma doubler supply added to a 300 -volt doubler supply to produce +410 volts unregulated. This supply provides plate voltage for the +300 -volt regulator.
b. a second 300 -volt doubler providing +140 volts for V503 and V504 in the pulse-generating section and +55 and -150 volts for the bistable gate circuits.
c. a 200 -volt doubler for the pulse output stage.
d. a half-wave rectifier supplying additional 340-v bias to V509 for the pulse output stage and pulse amplitude regulator.
4.8.2.2 Regulator. A Type 6AS6 series tube (V601) is biased to the proper operating point to produce a 300 -volt output by means of the plate current of V602 flowing through R605. The level of this plate current is controlled by the grid voltage on V602, controlled by R612. R612 therefore determines the regulated output voltage. The 150 -volt reference voltage for the cathode of V602 is produced by V603. Some unregulated voltage from the 410 -volt supply is developed across R607 and is added to the grid network of V602. This provides compensation for changing input voltage. When the output voltage tends to rise due to an increase in line voltage, the grid voltage on V602 increases, increasing the bias on V601 and lowering the output voltage. This compensation produces a negative slope of output voltage with increasing line voltage over the range from 100 to 130 volts. From 105 to 125 volts, the output voltage from the supply changes by less than one-half volt.

Section

5.1 GENERAL. The two-year warranty given with every General Radio instrument attests the quality of materials and workmanship in our products. When difficulties do occur, our service engineers will assist in any way possible.

In case of difficulties that cannot be eliminated by the use of these service instructions, please write or phone our Service Department, giving full information of the trouble and of steps taken to remedy it. Be sure to mention the serial and type numbers of the instrument.

Before returning an instrument to General Radio for service, please write to our Service Department or nearest district office (see back cover), requesting a Returned Material Tag. Use of this tag will insure proper handling and identification. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay.

5.2 SERVICE.

5.2.1 GENERAL. The Type 1391-B Pulse, Source, and TimeDelay Generator is designed for easy servicing. There are many front-panel connections to the circuits, and test points are provided for oscillographic presentation of stage performance wherever there is no panel connection for the stage. The following notes are based on signal-tracing methods in order of increasing difficulty in required measurements. First isolate the trouble by front-panel observation, using an oscilloscope. Then use Table 5.2 and paragraph 5.2.2 to isolate the defective stage or stages.

Troubles in operation can be divided into two classes: faulty or erroneous operation of a circuit (or perhaps of one range of one circuit), and complete failure of a group of circuits or of the whole system. Troubles in the first category are obviously easy to remedy. Faulty or erroneous operation of one range alone points to the components actually switched on in that range. Faulty operation on all ranges of a multirange circuit usually points to fixed components, tubes, a power supply common to that circuit, etc. Such trouble can usually be remedied by direct investigation of the tubes or components involved and reference to the service data on waveforms and voltages.

CAUTION

When replacing a component on an etched board, be careful not to destroy the bond between board and etched wiring by heat or by force. When removing the defective component, firmly grab the wire at the component side (the component may be clipped off first), and then, pulling on the wire, apply just enough heat to the solder to free it. Before inserting the new component, make certain that an unobstructed passage exists, either by carefully drilling through the component side or by removing the solder from the hole. When using the soldering iron to remove solder, draw the solder back along the conductor from the tab with quick strokes. Never apply the soldering iron to the etched board for more than five seconds at a time.

If the position of the board prohibits the above procedure, many components can be replaced as follows: destroy the old component, preserving enough wire to attach the replacement, then solder the new component in place.

5.2.2 ISOLATION OF TROUBLES.

5.2.2.1 General. Set all controls to the standard positions listed in paragraph 2.3. Be sure that the power is on and that all cables are plugged in on the rear panels of power supply and main unit. Also be certain, by measurement at the PRF DRIVE terminals, that an adequate signal (1 to 10 volts) is present.

Using Table 5.2,observe output signals and monitor lamps to determine which signals are missing or not functioning properly. The 13 columns of signals and indications of signals present (P) or absent (A) will isolate the circuit action at fault. After finding the defective section, use an oscilloscope to observe the waveforms at the test points of the defective section. Proceed in order of increasing numerical value through the circuit to isolate the defective stage. Then measure voltages and check them against Table 5.3.
5.2.2.2 All Signals Absent and Indicators Do Not Light. This is an indication that the defect is either in the input circuit generating the direct trigger (V101A, V102, or V103A), or else is a failure of the power supply feeding these stages. Either possibility can be checked first. Remove the cover and left side pan of the instrument. Voltages can be checked at input power plugs or at the rear skirt of the instrument. (See Figure 5.5.)
5.2.2.3 Direct Sync Present, DELAY MONITOR Lamp Lights Only When Direct Sync Pulse is Connected to POS COINC DRIVE Terminals. This indicates that neither sweep control multivibrator will operate. The only common connections between the circuits are the $+55-150$, and -200 -volt power supplies. Check the +55 and -150 -volt supplies first. The -200 -volt supply provides the bias for the direct trigger pulse amplifier. Failure of this supply could cause the trigger amplitude to decrease enough to cause failure of the control multivibrator. Check the direct trigger amplitude (at AT205) if the -150 - and +55 -volt supplies are satisfactory.
5.2.2.4 Direct Sync Pulse Absent or Low, Balance of Instrument Functions Properly. This symptom points to a weak tube or defective component in the direct sync output circuit. Check the direct sync amplifier tubes V103B and V104A and components. 5.2.2.5 Delay Circuit Does Not Function When RESET Switch is Flipped. Determine whether it is the coincidence-gate circuit, the main delay group, or the output circuit that has failed. Remove the cover of the instrument and check for the presence of a positive delay gate at TP201 (flip RESET switch after connecting oscilloscope). If the gate exists there, the difficulty is
in V206 (coincidence gate monostable) or its associated components. As a first check, make sure that the delay reset pulse has the correct amplitude by checking the pulse from TP203 against Figure 5.7.

Since the main delay circuit is a feedback loop in which all circuits (V201 through V205) must be functioning, a special procedure can be used to isolate the defective component. (Refer to paragraph 5.3.1.)
5.2.2.6 No Delay Sync Pulse Present When Direct Sync Pulse Is Connected to POS COINC DRIVE Terminals. Throw the SWEEP TRIGGER switch to DELAYED. If the sweep circuit does not start, the difficulty is in the delay sync amplifier (V208B) or cathode follower (V207B) or their components.
5.2.2.7 Delay and Direct Triggers Normal; Sweeps, Gates and Pulses Missing. This indicates that the sweep loop (V301, V302, V303, V304, V309, V305A, and V306) is defective. Since the reset pulse must be present to reset the bistable gate, the loop can "lock out", as can the delay circuit. Troubles are most easily isolated by means of the special procedure outlined in paragraph 5.3 .
5.2.2.8 Defective or Missing Negative Sweep Only. Check V307B, V308B, and their components. If only the SWEEP MONITOR lamp functions, check V310B and associated components.
5.2.2.9 No Main Pulse, No Output Pulse From START Trigger Terminal when PULSE START STOP TRIGGER Switch is in INTERNAL (NORMAL) Position. This indicates a failure in the start channel (V401, V403, or V405). First look for the positive start trigger at TP401 shown in Figure 5.7. If the trigger exists, the trouble must be in V403, V405, or associated components.
5.2.2.10 No Main Pulse, No Output Pulse From STOP Trigger Terminal When PULSE START STOP TRIGGER Switch is in INTERNAL (NORMAL) Position. This indicates failure in V402, V404, or V406. First check TP402 for the positive stop trigger as shown in Figure 5.7. If the trigger exists, the difficulty is with V404 or V406.
5.2.2.11 No Main Pulse, Both Start and Stop Triggers Present When PULSE START STOP TRIGGER Switch is in INTERNAL (NORMAL) Position. This usually indicates a failure in the pulse source itself. First check the operation of V404 and V405 by checking their waveforms at TP403 and TP404. If these pulses are as shown in Figure 5.7, proceed to a detailed check of the pulse source (paragraph 5.3.2).
5.2.2.12 All Signals Present Except Sweep Gate. Since the sweep gate output system consists only of a simple pulse-splitter from the sweep-gate bistable multivibrator, which must be operated to produce the sweep, the trouble can only be inV305B or associated components.
5.2.2.13 Negative Sweep and Positive Sweep Both Missing, Pulse-Timing Circuit Normal. The only circuit common to both negative and positive sweep phases after the pulse-timing sweep is taken out is that of V308A and its associated components. Check this circuit.
5.3 SPECIAL TECHNIQUES FOR TROUBLE-SHOOTING DELAY, SWEEP, AND PULSE-TIMING CIRCUITS. The possible bistable characteristic of the delay and sweep loops when a
failure occurs, and the definite bistable characteristic of the pulse generator make trouble-shooting these circuits somewhat more complex than the straightforward signal-tracing techniques that suffice for the other circuits. Paragraph 5.3 .1 below outlines the techniques for the sweep and delay circuits, and paragraph 5.3.2 that for the pulse generator.
5.3.1 DELAY AND SWEEP LOOP TROUBLE-SHOOTING. Assume that the delay reset pulse amplifier V204B should fail by burnout. The first direct trigger received by V201 of the bistable control circuit upon warmup will flip V202 on and cut off V203. The delay sweep will rise and cause V205 to switch to generate the driving pulse for V 204 B , which cannot produce the reset pulse. The loop is now stable, with V201 off, V202 on, V203 off, V204A in grid current, V205A on, and V205B off. The same condition could obviously be caused by a defective V204, V205, etc.

Several procedures can be used to isolate the defective components. Since it is probable that the failure is caused by a weak or failed vacuum tube, it would be advisable to replace tubes, one by one, with tubes known to be good. Voltages can, of course, be measured and checked against those given in Table 5.3 , after making sure of the state of the delay gate (V201 on, V202 off).

The following is a rapid and effective means of locating difficulties in each loop:
a. Connect an oscilloscope set for d-c operation to TP201 (or POS GATE).
b. Set DELAY (or SWEEP) RANGE switch to the longest range, 1 second ($120,000 \mu$ sec sweep range).
c. Connect a low-frequency ($10-20 \mathrm{cps}$) source to the PRF DRIVE terminals.
d. Now flip the RESET switch. V201 (301) should go on and be turned back off by the next low-frequency direct trigger. If V201 or V301 does not switch on, the control bistable gate is defective. The defect can be remedied either by tube replacement or voltage measurement. In the delay circuit, the manual reset pulse is actually produced by the momentary grounding of the cathode of V204B by a discharged capacitor (C221); so that if the delay circuit is involved, V204 and its associated components must also be suspect. If the delay circuit fails to change state, produce a reset pulse by touching a grounded, discharged $100-\mu \mu \mathrm{f}$ capacitor on TP203. This will produce a negative pulse to turn V202 off. If the bistable switches when this is done, V204B or one of its components is faulty.

If the bistable gate of the defective circuit is functioning, the trouble can easily be located by the substitution of a reset pulse for that of the defective loop. The procedure is as follows:
(1) Delay Circuit: The falling edge of the positive output is substituted for the missing reset pulse.
(a) Set the SWEEP TRIGGER switch to DIRECT so that the sweep and delay circuits are started simultaneously.
(b) Set up a 10 -kc repetition rate, set the DELAY RANGE control to $10-100 \mu \mathrm{sec}$, and set the sweep and pulse controls to produce a $50-\mu \mathrm{sec}$ pulse on the $60-\mu \mathrm{sec}$ sweep range.
(c) Connect the PULSE POS output terminal to TP203 (DELAY RESET PULSE) through a jumper and $100-\mu \mu \mathrm{f}$ capacitor.
(d) Flip the RESET switch and check for gate waveform at TP202. The delay sweep will reset simultaneously with the trailing edge of the positive pulse, and the delay sweep can now be checked at TP202. If the gate still does not function, test the bistable gate as directed in the beginning of this section.
(2) Sweep Loop: The delay reset pulse can be substituted for the sweep reset pulse by means of a jumper containing a $100-\mu \mu \mathrm{f}$ capacitor connected between TP203 and TP305.
(a) Set the SWEEP TRIGGER switch to DIRECT.
(b) Set up a $10-\mathrm{kc}$ repetition rate, set the DELAY controls for $60 \mu \mathrm{sec}$. The sweep will be started by the direct trigger and will stop at the setting of the delay control. Check for the sweep gate at its output terminals.
(c) The sweep can now be traced through TP302-TP305, and the defective stage isolated by signal-tracing methods. In order to check the sweep amplitude selector, V306, the delay control must be advanced beyond $60 \mu \mathrm{sec}$, the point where the sweep amplitude selector should trigger.
e. The following symptoms are possible:
(1) Delay Circuit: The normal condition with the DELAY controls set for maximum is a sawtooth waveform rising to 150 volts, where V204A draws grid current. A steady low voltage at TP202 indicates a defective V203 (grid, cathode, or screen short) on a nonconducting V204. A steady high voltage could be caused either by a defective V203 or an open R234. An open R234 or a grid-cathode short in V205A will produce a voltage at TP202 that varies as the DELAY control setting is varied.
(2) Sweep Circuit: In the sweep circuit, there are two tubes, V303 and V309, that must be turned off by the gate. If V303 fails to go off, the sweep voltage will not rise. If V309 does not shut off, there will be a small step until V304 begins to draw grid current.
5.3.2 TROUBLE-SHOOTING THE PULSE SOURCE. A pulse can be absent for either of two reasons: (1) the control multivibrator is defective, or (2) power-supply voltage is incorrect or missing. Proceed as follows to isolate the difficulty:
a. Having determined that both start and stop pulses are present (paragraph 5.2.2.11), using an oscilloscope, compare the waveforms at TP501 and TP502 with those shown in Figure 5.7.
b. If the multivibrator is operating correctly, place the PULSE START STOP TRIGGER switch in the EXTERNAL OUT position, and, using a 20,000 -ohm-per-volt voltmeter (or VTVM), measure the quiescent d -c voltages at the points in Table 5.4. This is a quick check on both tube and power-supply performance. (Voltages given in the table are typical for 115 -volt line and should not vary by more than 10 percent.) Note that at TP501 and TP506 the first voltage given is for the normal quiescent position, and the second is the active pulse interval. If the gate is in the pulse-on state (V502 on), then the second voltage listed applies and the voltage states at all succeeding test points and at pulse output terminals will reverse. Any abnormal voltages indicate difficulties that can be remedied by replacement of tubes or components.
5.4 SETUP PROCEDURE FOR THE PULSE DURATION AND POSITION DIAL ASSEMBLY. The following procedure will be necessary only when a potentiometer is replaced or a part of the mechanical assembly is damaged and must be replaced. The object is to adjust the potentiometer blades so that all mechanical stopping action is accomplished by panel stops external to the potentiometers, and so that the DURATION dial can never be set to produce a "negative" pulse duration.

The four potentiometers are R409, R403, R410, and R404, in order from the front panel toward the rear of the instrument (see Figure 5.9). R409 and R403 are the two pulse delay controls, and R410 and R404 are the pulse duration adjustments.
a. Loosen the interlocking collars (A, B, C) between R403 and R410.
b. Connect an ohmmeter between the center and counterclockwise (facing from the panel) terminals of R 409 and, by means of the DELAY dial, set the potentiometer to give a reading of between 20 and 100 ohms.
c. Check the synchronization of R403 by connecting the ohmmeter between the center and counterclockwise terminals of R403. The reading should be between 20 and 100 ohms. Adjust, if necessary, by loosening and rotating collar A (Figure 5.9). Retighten collar A.
d. Loosen the set screws (just behind the front panel) that hold the DELAY dial to the shaft, and set the DELAY dial to the etched 2.75-5.50-11.00 point. Tighten the set screws to secure the dial to the shaft, and move the DELAY dial to exactly 0.25-0.5-1.0.
e. By means of the DURATION dial, set R410 to read between 20 and 100 ohms on an ohmmeter connected between its center and counterclockwise terminals. Check R404 for synchronization with R410 by reading the resistance between its center and counterclockwise terminals. Adjust, if necessary, by loosening and rotating the rear collar (D, Figure 5.9) for a reading of between 20 and 100 ohms. Retighten D.
f. Rotate the rear interlocking collar (C, Figure 5.9) against the fixed stop (S) and tighten it to the shaft.
g. Loosen the DURATION dial from the shaft by loosening the set screws on the knob. Then, without disturbing the position of the shaft, set this dial exactly to the $2.5-5.0-10.0$ point and tighten the set screws. (Do not disturb the DELAY dial setting; it must be set to the $0.25-0.5-1.0$ point.)
h. Without disturbing the DELAY dial setting, move the DURATION dial to its exact zero point. Rotate the front interlocking collar (B, Figure 5.9) counterclockwise until it engages the pin on the rear interlocking collar C. Then tighten collar B to the outer shaft.
i. Check results as follows:
(1) With the DELAY dial exactly at 0.25-0.5-1.00, the DURATION dial can be set to any calibrated point within its range, but cannot be set outside its range in either direction.
(2) With the DELAY dial exactly at $2.75-5.50-11.00$, the DURATION delay will indicate exactly zero and will be immovable.
5.5 TROUBLE-SHOOTING CHART. The following is a tabulation of some of the more likely causes of malfunction, together with suggested adjustments and replacements.

TABLE 5.1 TROUBLE-SHOOTING CHART

	PULSE
a. Ringing	Incorrectly terminated transmission lines, causing stray inductance. 300 -ohm twin lead properly terminated produces a clean pulse.
b. Overshoot	Improperly adjusted oscilloscope and/or poor termination (see a., above).
c. Pulse with two distinct levels.	Incorrect bias supply adjustment ($400-\mathrm{v}$ supply) or abnormally low line voltage. Readjust bias voltage by R616 on rear skirt of power supply. Adjust for pulse flatness. Or replace V503 and/or V504.
d. Hum on pulse	V505 or V506 weak, or incorrect adjustment of $-15 \mathrm{C},+55-\mathrm{v}$ supply. Adjust R618.
e. Ramp-off	Check that oscilloscope has adequate low-frequency response. Check compensation of oscilloscope probe, if one is used. Calculate coupling time constant; it must be at least 10 times as large as pulse transmitted to produce less than 10% rampoff.
f. Inadequate rise time	Check typical rise times in Specifications. Remember that system tolerance to stray capacitance decreases as output impedance increases. Check oscilloscope bandwidth, remembering that observed rise time is that given by over-all system response. $\mathrm{T}_{\mathrm{obs}}=\sqrt{\mathrm{T}_{\text {pulse }}^{2}+\mathrm{T}_{\text {sys }}^{2}}$
	SWEEP CIRCUIT
g. Positive sweep and pulse timing nonlinear (sweep slope decreases).	Incorrect adjustment of $+55-,-150-\mathrm{v}$ supply so that V503 is not completely off. Make $-150-\mathrm{v}$ supply more negative or replace V503.
h. Negative sweep nonlinear.	Readjust R340 (this might benecessary when V307 is replaced).
i. Poor recovery time (over $2 \mu \mathrm{sec}$ for $3-\mu \mathrm{sec}$ sweep).	Replace defective V309 or V307.
j. V304 weak or defective and R335 and R336 excessively hot.	Check V310, sweep protective tube and circuit, and repair if necessary. To test circuit, pull V303 out of its socket and: (1) Check that plate voltage of V302 is positive with respect to ground. If this voltage is negative, flip the RESET button. (2) With V 302 off, measure voltage at TP303. It should be about 125 volts. If it is higher, check V310 and associated circuits.
	DELAY CRTCUIT
k. Delay nonlinear at top of scale, period longer than dial reading.	Nonlinearity of delay sweep due to: (1) V203 not shutting completely off. Check $+55-$, $-150-\mathrm{v}$ supply and V203. or (2) V204 drawing excessive grid current. Replace tube.

1. Excessive jitter on delay synchronizing pulse.
m. Large drift in delay sync. pulse (over 1:1000) for 10% line change.

DELAY CIRCUIT (Cont.)

Check line and noise on $+300-\mathrm{v}$ regulated supply. Check V204 and V205 for heater cathode leakage.

Occurs only when V205 is replaced. Replace R219 with value necessary to compensate completely for a line change with DELAY MICROSECONDS dial at a minimum. To establish value, replace R219 with a $200-\mathrm{k}$ resistor in series with a 1 -megohm potentiometer and establish correct compensation by inserting resistance for minimum drift as line voltage is varied $\pm 10 \%$ from normal.

INPUT CIRCUIT

n. Loss of input sensitivity.

V101 weak or R104 incorrectly adjusted. In either case, adjust R104 to restore normal operation.
o. Direct trigger amplitude low (less than 5 volts).

CheckV 103 for grid current by replacing it with a tube known to be good. (V103 can be interchanged with V207.)

POWER SUPPLY
CAUTION: Be careful when servicing power supplies. The high-voltage supplies are dangerous.
p. Short circuit in a power-supply component or a burned-out rectifier.
q. Power-supply about half its normal value.
r. Low output voltage.
s. Burned-out or overheated resistors in filter networks.
(1) Try to find source of overload with ohmmeter check. The damaged rectifier is easy to find by visual inspection. Refer to rectifier layout in Figure 5.13.
(2) Replace the defective components (or component).
(3) Then replace the defective rectifier.
(4) Carefully test repaired supply by measuring the output voltage at very low input voltages. (If possible, use a Variac ${ }^{\text {® }}$ to increase input voltage slowly.) The power supply output should be slightly higher at very low input voltages than the proportional normal voltage.
Defective rectifier or half-wave rectifier operation. Replace defective rectifier and then check associated filter capacitor.

Measure voltage across entire input capacitor in doubler supplies, then across each half of doubler. Check (1) electrolytic capacitors and (2) rectifiers associated with low side.
Trouble must be isolated to either power-supply filter or main unit. Hence:
(1) Break connection at either SO602 or PL401 and insert milliammeter between open connections.
(2) Turn on power and gradually increase line voltage, observing current. If current value is too high, repair defective circuit in the main unit. See Table 5.6.
(3) If current is still low, check electrolytic capacitors of associated filter. If too high, check associated circuit in main unit.

POWER SUPPLY (Cont.)

t. 300-v output not regulated, too high.
u. 300-v output not regulated, too low.

Check V602 and V603. Component may be causing V602 to be nonconducting. Check V601 for a grid cathode short.

Check V601 and the $+450-\mathrm{v}$ supply. After replacing any tubes in regulator, check output voltage and compensation in accordance with paragraph 3.7.3.
5.6 TROUBLE-SHOOTING PROCEDURE. Table 5.2 should enable the user to pinpoint the circuit in which the trouble exists. Columns 1 through 13 contain various sets of conditions, in which indications as listed in the left-hand column are either
present or absent. Simply determine the vertical column corresponding to the conditions present on the instrument, and refer to the information in the lower part of that column.

TABLE 5.2 TROUBLE-SHOOTING PROCEDURE
(Control settings as listed in paragraph 2.3)

Initial Test Measurement	1	2	3	4	5	6	7	8	9	10	11	12	13
Direct Sync Pulse	A	P	A	P	P	P	P	P	P	P	P	P	P
$\begin{aligned} & \text { Delay Sync } \\ & \text { (DELAY MONI- } \\ & \text { TOR lamp) } \end{aligned}$	A	A	P	A	A	P	P	P	P	P	P	P	A
DELAY MONITOR lamp, Direct Sync at POS COINC DRIVE terminals	A	P	P	P	A	P	P	P	P	P	P	P	A
Positive Sweep (SWEEP MONITOR lamp)	A	A	P	P	P	A	P	P	P	P	P	A	P
Negative Sweep (SWEEP MONITOR lamp)	A	A	P	P	P	A	A	P	P	P	P	A	P
Sweep Gate	A	A	P	P	P	A	P	P	P	P	A	P	P
Start Trigger (PSST in INT NORMAL)	A	A	P	P	P	A	P	A	P	P	P	P	P
Stop Trigger (PSST in INT NORMAL)	A	A	P	P	P	A	P	P	A	P	P	P	P
Main Pulse	A	A	P	P	P	A	P	A	A	A	P	P	P
Probable Failure	$\begin{aligned} & 300-\mathrm{v} \text { (reg or } \\ & \text { unreg) pwr } \\ & \text { sup or input } \\ & \text { circuit (V101, } \\ & \text { V102, V103) } \end{aligned}$	$\begin{aligned} & +55,-150, \\ & -190, \text { or } \\ & -180-\mathrm{v} \text { pwr } \\ & \text { supply; } \\ & \text { V103 weak } \end{aligned}$	Direct sync out, V103 or V104	Main delay circuit loop, V201 thruV205, or V206	Coinci- dence system V207, V208, V101B, V104B	Sweep Circuit loop	Neg swp output V307, V308, V310	Start amp com- parator V401, V403 V405	Stop amp compara tor V402, V404 V406	Pulse source	Swp gate amp V 305	$\left\lvert\, \begin{aligned} & \text { Neg and } \\ & \text { pos swp } \\ & \text { V308 } \end{aligned}\right.$	$\begin{aligned} & \text { Delay } \\ & \text { sync } \\ & \text { output } \\ & \text { V208B, } \\ & \text { V207B } \end{aligned}$
Reference Paragraph	5.2.2.2	5.2.2.3	5.2.2.4	5.2.2.5	5.2.2.6	5.2.2.7	5.2.2.6	5.2.2.9	5.2.2.10	5.2.2.11	5.2.2.12	5.2.2.13	5.2.2.6
Test Points for systematic check	101, 102			$\begin{aligned} & 201,202, \\ & 203 \end{aligned}$	$\begin{aligned} & 204, \\ & 205, \\ & 206 \end{aligned}$	$\begin{aligned} & 301 \\ & 302 \\ & 303 \\ & 304 \end{aligned}$		401	402	$\begin{aligned} & 403, \\ & 404, \\ & 501 \\ & \text { thru } \\ & 506 \end{aligned}$			
Measure Voltage	$\begin{aligned} & 300 \text { (reg, un- } \\ & \text { reg) }-190 \end{aligned}$	$\begin{aligned} & +55,-150 \\ & \text { heater bus } \\ & \text { " } \mathrm{N} \text { " } \end{aligned}$								at 50- ohm output termi- nals			
NOTES				$\begin{aligned} & \hline \text { Check } \\ & \text { V206 } \\ & \text { first by } \\ & \text { observing } \\ & \text { at TP201. } \end{aligned}$						Defects in out- put pulse (Par. 5.4)			

TYPE 1391-B PULSE, SWEEP AND TIME-DELAY GENERATOR
$\left.\begin{array}{|c|c|c|c||c|c|c|c|c||l|l|l|l|}\hline \begin{array}{c}\text { TUBE } \\ \text { (TYPE) }\end{array} & \text { PIN } & \begin{array}{c}\text { D-C } \\ \text { VOLTS }\end{array} & \begin{array}{c}\text { RES } \\ \text { TO } \\ \text { GND }\end{array} & \begin{array}{c}\text { TUBE } \\ \text { (TYPE) }\end{array} & \text { PIN } & \begin{array}{c}\text { D-C } \\ \text { VOLTS }\end{array} & \begin{array}{c}\text { RES } \\ \text { TO } \\ \text { GND }\end{array}\end{array}\right)$

NOTES:
(1) Input resistance of d-c voltmeter must be several times value listed in RES column.
(2) Panel controls should be set as follows:

TIME DELAY RANGE: $10-100 \mathrm{~ms}$ COINCIDENCE GATE DURATION: CCW COINCIDENCE SENSITIVITY: CW MICROSECONDS: 1.00 PULSE AMPLITUDE: CW OUTPUT IMPEDANCE: 150 PULSE DELAY: CW PULSE DURATION: CW SWEEP MULTIPLIER: 10^{2} SWEEP SCALE: 6
(3) Measure voltages with no input signal.
(4) Voltage conditions in push-pull stages of pulse-forming circuits (V501 to V507) may be the reverse of those listed. (i. e., V501 voltages may apply to V502, and vice versa.)
(5) Operate RESET switch before making voltage measurements.
(6) All resistances are in ohms unless otherwise indicated by k (kilohms) or M megohms).
(7) Resistance measurements were made with all terminals of PL401 grounded in the Type $1391-\mathrm{B}$, and all terminals of SO401 grounded in the Type 1391-P2. Resistances at PL401 terminals were measured with Type 1391-P2 disconnected.

GENERAL RADIO COMPANY

TABLE 5.4
VOLTAGES IN THE PULSE SOURCE

Measurement Point	Volts dc	
	Quiescent	Active
TP501	+53	+41
TP502	+41	+55
TP503	-212	-182
TP504	-185	-218
TP505	-135	-158
TP506	-155	-135
PULSE POS	-23	0
PULSE NEG	0	-24

NOTES

1. Voltages in column labeled "Quiescent" are for the nor mal position, those in the "Active" column for the active pulse interval. If the gate is in the pulse-on state (V502 on), then the "Active" voltage applies and the voltage stated of all succeeding test points and at pulse output terminals reverse roles.
2. Voltages should be measured with no input signal.
3. Switch settings:

OUTPUT IMPEDANCE: 150
PULSE AMPLITUDE: CW
4. Any abnormal voltages indicate troubles that can be remedied by replacement of tubes or components.

TABLE 5.5
POWER-SUPPLY-CIRCUIT CONNECTIONS
TABLE 5.6
TABLE OF D-C OUTPUTS (Measured at SO602)

SUPPLY	PL401 PIN NO.	TUBES
+410	1	V308B
+300	2	V101A, V102, V104B, V203, V204A,
		V205, V207A, V208, V303, V304,
$+300(\pm 10 \%)$	4	V309, V306, V307B
		V101B, V103, V104A, V204B, V206A,
+55	5	V207B, V308A, V307A, V305, V310B
-150	6	V201, V202, V301, V302, V501, V502
		V201, V202, V301, V302, V501, V502,
-190	7	V206
-290	9	Bias V103A, bias V208A, V507
+140	10	V505, V506
-425	12	V503, V504
		Bias V505, bias V506

PL602	Volts	Ma
1	+435	17
2	+300	120
4	+310	92
5	+55	29
6	-150	46
7	-190	207
9	-540	0.3
10	+150	170
12	-430	7

PARTS LIST					
					GR No. (NOTE A)
合	R101	33 k	$\pm 5 \%$	1/2 w	REC-20BF
	R103	1 k	$\pm 5 \%$	1/2 w	971-410
	R104	1 k	$\pm 10 \%$		POSW-3
	R105	120 k	$\pm 5 \%$	1 w	REC-30BF
	R106	6.8 k	$\pm 5 \%$	2 w	REC-41BF
	R107	3.9 k	$\pm 5 \%$	2 w	REC-41BF
	R108	120 k	$\pm 5 \%$	1/2w	REC-20BF
	R109	56 k	$\pm 5 \%$	1/2w	REC-20BF
	R110	5.1 k	$\pm 5 \%$	2 w	REC-41BF
	R112	12 k	$\pm 5 \%$	1/2 w	REC-20BF
	R113	1 k	$\pm 5 \%$	1/2 w	REC-20BF
	R114	27 k	$\pm 5 \%$	2 w	REC-41BF
	R115	43 k	$\pm 5 \%$	1 w	REC-30BF
	R116	1 k	$\pm 5 \%$	1/2 w	REC-20BF
	R117	10 k	$\pm 10 \%$	5 w	REPO-43
	R118	220 k	$\pm 5 \%$	1/2 w	REC-20BF
	R119	10 k	$\pm 10 \%$	1 w	REC-30BF
	R120	180 k	$\pm 5 \%$	1/2w	REC-20BF
	R121	100 k	$\pm 5 \%$	1/2 w	REC-20BF
	C101	47	$\pm 10 \%$	500dcwv	COC-21(N750)
	C102	3-12			COT-23
	C103		$\pm 10 \%$	500dcwv	COM-20B
	C104	$0.01 \mu \mathrm{f}$		500dcwv	COC-63
	C105	470	$\pm 10 \%$	500dcwv	COM-20B
	C106	$0.001 \mu \mathrm{f}$	$\pm 10 \%$	300dcwv	COM-20B
	C107	100	$\pm 10 \%$	500dcwv	COM-20B
	C108	0.01 1 f	$\pm 10 \%$	500dcwv	COL-71
	C109	$0.01 \mu \mathrm{f}$		500dcwv	COC-63
	C110	$1 \mu \mathrm{f}$	$\pm 10 \%$	400dcwv	COW-25
	C111	0.1 ff	$\pm 10 \%$	600dcwv	COL-71
	C112	3.3	$\pm 10 \%$	500dcwv	COC-1
	BL101				FA-1
	D101				1N34-A
	D102	CRYSTAL DIODE			1N625
	D103	CRYSTAL DIODE			1N625
	DL101	DELAY LINE, $0.2 \mu \mathrm{sec}$ SNAP CONTROL, Thermo			1391-326
	F101				FUC-13
	L101	AIR CHOKE, $50 \mu \mathrm{~h}$			CHA-3-2
	PL101	PLUG			CDMP-11-10
	S101	SWITCH, Rotary			SWRW-175
	V101	TUBE			${ }^{5965}$
	V102				6BQ7-A
	V103	TUBE			5963

For explanation of NOTES, refer to page 42.

O panel control
DCREW DRIVER ADJUSTMENT
resistors i/2 watt unless otherwise specified
RESISTANCE IN OHMS UNLESS OTHERWISE SPECIFIED
$K=1000$ OHMS
$M=1$ MEGOHM CAPACITANCE VAL UES ONE AND OVER IN MICRO
MICROFARADS, LESS THAN ONE IN MICROFARADS, UNLE

* HEATER CABLE CONNECTIONS SHOWN IN FIGURE 5.5b

TP USED: $101,102,103$

GR No.
(NOTE A)

	R201	1	k	$\pm 5 \%$	1/2 w	REC-20BF
	R202	4.7	k	$\pm 5 \%$	1/2 w	REC-20BF
	R203	6.8	k	$\pm 5 \%$	1 w	REC-30BF
	R204	6.8		$\pm 5 \%$	1 w	REC-30BF
	R205	100	k	$\pm 1 \%$	1/2 w	REF-70
	R206	100	,	$\pm 1 \%$	1/2 w	REF-70
	R207	30	k	$\pm 1 \%$	1/2 w	REF-70
	R208	30	k	$\pm 1 \%$	1/2 w	REF-70
	R209	3	k	$\pm 5 \%$	1/2 w	REC-20BF
	R210	36	,	$\pm 5 \%$	1/2 w	REC-20BF
	R211	100	k	$\pm 5 \%$	1/2 w	REC-20BF
	R212	47	k	$\pm 5 \%$	2 w	REC-41BF
	R213	24	k	$\pm 5 \%$	1 w	REC-30BF
	R218	10	k	$\pm 5 \%$	1/2 w	REC-20BF
	R219	270	k	$\pm 5 \%$	1/2 w	REC-20BF
	R220	47	k	$\pm 5 \%$	1/2 w	REC-20BF
	R221	10	k	$\pm 5 \%$	1/2 w	REC-20BF
	R222	450	k	$\pm 1 \%$	1/2 w	REF-70
	R223	450	k	$\pm 1 \%$	$1 / 2 \mathrm{w}$	REF-70
	R224	450	k	$\pm 1 \%$	1/2 w	REF-70
¢	R225	450	k	$\pm 1 \%$	1/2 w	REF-70
	R226	500	k	$\pm 1 \%$	$1 / 2 \mathrm{w}$	REF-75
	R227	4.5	M	$\pm 1 \%$	1 w	REF-2-2
	R228	250	k	$\pm 10 \%$		POSC-11
	R229	100	k	$\pm 10 \%$		POSC-11
	R230	100	k	$\pm 10 \%$		POSC-11
	R231	100	k	$\pm 10 \%$		POSC-11
	R232	100	k	$\pm 10 \%$		POSC-11
	R233	1	M	$\pm 20 \%$		POSC-11
	R234	22	k	$\pm 5 \%$	2 w	REC-41BF
	R235	24	k	$\pm 5 \%$	5 w	REPO-43
	R236	5	k	$\pm 10 \%$		POSW-3
	R237	10	k	$\pm 5 \%$		1391-42
	R238	500		$\pm 10 \%$		POSW-3
	R239	27	k	$\pm 1 \%$	1/2 w	REF-70
	R240	6.8	k	$\pm 10 \%$	2 w	REC-41BF
	R241	330	k	$\pm 1 \%$	1/2 w	REF-70
	R242	47	k	$\pm 10 \%$	1 w	REC-30BF
	R243	5.6	k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R244	33	k	$\pm 5 \%$	1/2 w	REC-20BF
	R245	1	k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R246	4.7	k	$\pm 5 \%$	1/2 w	REC-20BF
	R247	100	k	$\pm 5 \%$	1/2 w	REC-20BF
	R248	100	k	$\pm 5 \%$	1 w	REC-30BF
	R249	1	k	$\pm 10 \%$		POSW-3
	R250	2.2	k	$\pm 5 \%$	1/2 w	REC-20BF
	R251	15	k	$\pm 5 \%$	2 w	REC-41BF
	R252	510		$\pm 5 \%$	1/2 w	REC-20BF
	R253	10	k	$\pm 5 \%$		973-N
	R254		M	$\pm 5 \%$	1/2 w	REC-20BF
	R255	1	M	$\pm 20 \%$		POSC-11
	R256	3	k	$\pm 5 \%$	1/2 w	REC-30BF
	R257	1.2	k	$\pm 5 \%$	1/2 w	REC-20bF
	R258	3.3	k	$\pm 5 \%$	1 w	REC-30BF

GR No.
(NOTE A)

	R259	220	$\pm 5 \%$	1/2 w	REC-20BF
	R260	100 k	$\pm 5 \%$	1/2 w	REC-20BF
	R261	330	$\pm 5 \%$	1/2 w	REC-20BF
	R262	6.8 k	$\pm 10 \%$	2 w	REC-41BF
	R263	1 k	$\pm 5 \%$	1/2 w	REC-20BF
	R264	100 k	$\pm 10 \%$	1 w	REC-30BF
	R265	10 k	$\pm 5 \%$		973-N
	R266	100	$\pm 5 \%$	1/2 w	REC-20BF
	R267	k	$\pm 5 \%$	1 w	REC-30BF
	R268	47	$\pm 5 \%$	1/2 w	REC-20BF
\bigcirc	R269	47 k	$\pm 5 \%$	1/2 w	REC-20BF
뗍	R270	180 k	$\pm 5 \%$	1/2 w	REC-20BF
0	R271	5.1 k	$\pm 5 \%$	1/2 w	REC-20BF
2	R272	1 k	$\pm 5 \%$	1/2 w	REC-20BF
\sim	R273	27	$\pm 5 \%$	1 w	REC-30BF
	R274	27	$\pm 5 \%$	1 w	REC-30BF
	R275	33 k	$\pm 5 \%$	1/2 w	REC-20BF
	R276	10 k	$\pm 5 \%$	5 w	REPO-43
[5]	R277	220 k	$\pm 5 \%$	1/2 w	REC-20BF
	R278	10 k	$\pm 10 \%$	1 w	REC-30BF
	R279	18 M	$\pm 5 \%$	1/2 w	REC-20BF
	R280	100	$\pm 10 \%$	1 w	REC-30BF
	R281	1 M	$\pm 5 \%$	1/2 w	REC-20BF
	R282	560	$\pm 5 \%$	1/2 w	REC-20BF
	R283	62 k	$\pm 5 \%$	1/2 w	REC-20BF
	R284	1200	$\pm 5 \%$	1/2 w	REC-20BF
	R285	1.8 k	$\pm 5 \%$	1/2 w	REC-20BF
	R286	(Note F)	$\pm 5 \%$	1/2 w	REC-20BF
	R287	100	$\pm 5 \%$	1/2 w	REC-20BF
	R288	100 k	$\pm 5 \%$	1/2 w	REC-20BF
	R289	100 k	$\pm 5 \%$	1/2 w	REC-20BF
	R290	100	$\pm 5 \%$	1/2 w	REC-20BF
	C201	100	$\pm 10 \%$	500 dcwv	COC-21
	C202	100	$\pm 10 \%$	500 dcwv	COC-21
	C203	22	$\pm 10 \%$	500 dcwv	COC-21(N750)
	C204	22	$\pm 10 \%$	500 dcwv	COC-21(N750)
	C205	47	$\pm 10 \%$	500 dcwv	COC-21(N750)
	C206	$0.001 \mu \mathrm{f}$	$\pm 10 \%$	300dcwv	COM-20B
	C207	$0.01 \mu \mathrm{f}$	$\pm 10 \%$	600dcwv	COL-71
	C208	$0.01 \mu \mathrm{f}$	+100-0\%	500dcwv	COC-63
0	C209	$0.01 \mu \mathrm{f}$	+100-0\%	500dcwv	COC-63
O	C219	$0.0047 \mu \mathrm{f}$	$\pm 10 \%$	200dcwv	COW-16
	C220	$0.01 \mu \mathrm{f}$	+100-0\%	500dcwv	COC-63
,	C221	$0.47 \mu \mathrm{f}$	$\pm 10 \%$	100dcwv	COW-17
号	C222	7-45			COT-12
U	C223	470	$\pm 2 \%$	500dcwv	COM-20E
	C224	$0.0047 \mu \mathrm{f}$	$\pm 2 \%$	500dcwv	COM-35E
	C225	$0.047 \mu \mathrm{f}$	$\pm 2 \%$	150dcwv	ZCOP-8
	C226	$0.47 \mu \mathrm{f}$	$\pm 2 \%$	150dcwv	ZCOP-6-2
	$\mathrm{C} 227^{\text {C2 }}$	$0.01 \mu \mathrm{f}$	+100-0\%	500dcwv	COC-63
	C229	3.3	$\pm 0.5 \mu \mu \mathrm{f}$	500dcwv	COC-21(N750)
	C230	47	$\pm 10 \%$	500 dcwv	COM-20B

GR No.
(NOTE A)
COW-17

	C231	$0.22 \mu \mathrm{f}$	$\pm 10 \%$	100dcwv	COW-17	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { y } \\ & 4 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	D201		
	C232	$0.0047 \mu \mathrm{f}$	$\pm 10 \%$	600dcwv	COL-71		D202	CRYSTAL DIODE	1N54-A
	C233	$0.22 \mu \mathrm{f}$	$\pm 10 \%$	200dewv	COW-16		D203	CRYSTAL DIODE	1 N 118
	C234	330	$\pm 10 \%$	500 dcwv	COM-20B		D204	CRYSTAL DIODE	1N34-A
	C235	$0.001 \mu \mathrm{f}$	$\pm 2 \%$	300 dcwv	COM-20E		D205	CRYSTAL DIODE	1N118
	C236	$0.1 \mu \mathrm{f}$	$\pm 10 \%$	400dcwv	COW-25			CRYSTAL DIODE	
	C238	$0.001 \mu \mathrm{f}$	$\pm 10 \%$	500dcwv	COM-20B		L201	AIR CHOKE, $50 \mu \mathrm{~h}$	CHA-3-2
	C239	47	$\pm 10 \%$	500 dcwv	COC-21 (N750)		L202	AIR CHOKE, $100 \mu \mathrm{~h}$	CHA-3-3
	C240	$0.047 \mu \mathrm{f}$	$\pm 10 \%$	100dcwzv	COW-17		S201	SWITCH	SWRW-113
	C241	470	$\pm 10 \%$	500dcwv	COM-20B		S202	SWITCH	SWT-8
	C242	10	$\pm 0.5 \mu \mathrm{f}$	500 dcwv	COC-21 (N750)		S203	SWITCH	SWT-320
	C243	$0.01 \mu \mathrm{f}$	$\pm 10 \%$	600dcwv	COL-71		T201	TRANSFORMER	1391-44
	C244	$0.01 \mu \mathrm{f}$	+100-0\%	500dcwv	COC-63				
	C245	0.001 $\mu \mathrm{f}$	$\pm 10 \%$	300dcwv	COM-20B				
	C246	470	$\pm 10 \%$	500dcwv	COM-20B		V201	TUBE	6485
	C247	47	$\pm 10 \%$	500 dcwv	COC-21(N750)		V202	TUBE	6485
	C248	$0.001 \mu \mathrm{f}$	$\pm 10 \%$	300dcwv	COM-20B		V203	TUBE	6AN5
	C249	100	$\pm 10 \%$	500 dcwv	COM-20B		V204	TUBE	6AU8A
	C250	$0.01 \mu \mathrm{f}$	$\pm 10 \%$	600 dcwv	COL-71		V205	TUBE	12AX7
	C251	47	$\pm 10 \%$	500 dcwv	COC-21(N750)		V206	TUBE	5965
	C252	0.001 1 f	$\pm 10 \%$	300 dcwv	COM-20B		V207	TUBE	6U8
	C253	100	$\pm 10 \%$	500 dcwv	COC-21		V208	TUBE	6U8
	C254	22	$\pm 10 \%$	500 dcwv	COC-21(N750)		V209	TUBE	NE-51
	C255	470	$\pm 10 \%$	500dcwv	COM-20B				

For explanation of NOTES, refer to page 42.

Block Diagram for Delay Circuits.

PARTS LIST

GR No.
(NOTE A)
REC-20BF
REC-20B
REC-30BF
REF-70
REF-70
REF-70
REF-70
REC-20BF
REC-20BF
REC-41BF
REC-30BF
REC-20BF
REC-20BF
REC-20
$973-\mathrm{N}$
REC-41BF
REC-20BF
REC-20BF
REC-20BF
REC-20BF
REC-20BF
POSC-11
POSC-11
POSC-11
POSC-11
POSC-11
REC-41BF
REC-20BF
REC-20BF
1391-40
POSW-3
REC-20BF
REC-30BF
REC-20BF
REC-20BF
REC-20BF
REC-41BF
REC-41BF
REC-41BF
POSW-3
REC-30BF
REC-30BF
REC-20BF
REC-20BF
REC-20BF

GR No. (NOTE A)

	R 358	5.6 k	$\pm 5 \%$	1/2 w	REC-20BF
	R359	33 k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R360	1 k	$\pm 5 \%$	1/2 w	REC-20BF
	R361	10 k	$\pm 10 \%$	2 w	REC-41BF
	R362	7.5 k	$\pm 5 \%$	1/2 w	REC-20BF
	R363	5.6 k	$\pm 5 \%$	1 w	REC-30BF
	R364	5.6 k	$\pm 5 \%$	1 w	REC-30BF
	R365	10 M	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R366	10 M	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R367	10 M	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R368	10 M	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R369	2.7 M	$\pm 5 \%$	1/2 w	REC-20BF
	R370	150 k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R371	5.6 k	$\pm 5 \%$	1/2 w	REC-20BF
	R372	12 k	$\pm 5 \%$	2 w	REC-41BF
	R373	3.3 k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	R374	22 k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF
	C301	100	$\pm 10 \%$	500dcwv	COC-21
	C302	100	$\pm 10 \%$	500dcwv	COC-21
	C303	22	$\pm 10 \%$	500dcwv	COC-21(N750)
	C304	22	$\pm 10 \%$	500dcwv	COC-21(N750)
	C305	47	$\pm 10 \%$	dcwv	COC-21(N750)
	G306	$0.001 \mu \mathrm{f}$	$\pm 10 \%$	300dcwv	COM-20B
	C307	$0.01 \mu \mathrm{f}$	$\pm 10 \%$	600dcwv	COL-71
	C321	3-12			COT-23
	C322	430	$\pm 2 \%$	500dcwv	COM-20E
	C323	$0.0047 \mu \mathrm{f}$	$\pm 2 \%$	500dcwv	COM-35E
	C324	0.047 $\mu \mathrm{f}$	$\pm 2 \%$	150dcwv	ZCOP-8
	C325	$0.47 \mu \mathrm{f}$	$\pm 2 \%$	150dcwv	ZCOP-6-2
	C326	$0.1 \mu \mathrm{f}$	$\pm 10 \%$	100dcwv	COW-25
	C327	$1 \mu \mathrm{f}$	$\pm 10 \%$	400dcwv	COW-25
	C328	1 ¢f	$\pm 10 \%$	400 dcwv	COW-25
	C329	47	$\pm 10 \%$	500dcwv	COC-21(N750)
	C330	$30 \mu \mathrm{f}$		350dcwv	COE-53
	C331	$0.001 \mu \mathrm{f}$	$\pm 10 \%$	300 dcwv	COM-20B
	C332	220	$\pm 10 \%$	500 dcwv	COM-20B
	C333	47	$\pm 10 \%$	500 dcwv	COM-20B
	C334	10	$\pm 0.5 \mu \mu \mathrm{f}$	500dcwv	COC-21(N750)
	C335	47	$\pm 10 \%$	500dcwv	COM-20B
	C336	$0.1 \mu \mathrm{f}$	+100-0\%	300dcwv	COC-63
	C337	$1 \mu \mathrm{f}$	$\pm 10 \%$	100dcwv	COW-17
	C338	1 Hf	$\pm 10 \%$	400dcwv	COW-25
	C339	1 ¢f	$\pm 10 \%$	400dcwv	COW-25
	C340	16μ		150dcwv	COE-4
	C341	100	$\pm 10 \%$		COC-21
	D301				IN54-A
	D302	CRYSTAL DIODE			1N54-A
	D303				HD6008
	S301	SWITCHSWITCH			SWRW-80
	S302				SWRW-81

For explanation of NOTES, refer to page 42.

Figure 5.3. Schematic Diagram for Sweep Generator Circuits.

GENERAL RADIO COMPANY

PARTS LIST

	PART NO. (NOTE A)						PART NO. (NOTE A)				
	R401	560	$\pm 5 \%$	1/2w	REC-20BF		R446	150k	$\pm 5 \%$	1/2w	REC-20BF
	R402	560	$\pm 5 \%$	1/2w	REC-20BF		R447	33	$\pm 5 \%$	1/2w	REC-20BF
	R403	10k	$\pm 5 \%$		1391-210		R448	10k	$\pm 5 \%$	2 w	REC-41BF
	R404	10k	$\pm 5 \%$		1391-210						
	R405	24 k	$\pm 5 \%$	2 w	REC-41BF						
	R406	24 k	$\pm 5 \%$	2 w	REC-41BF		C401	33	$\pm 10 \%$	500 dcwv	COC-21(N750)
	R407	10k	$\pm 10 \%$		POSW-3		C402	10	$\pm 0.5 \mu \mu \mathrm{f}$	500 dcwv	COC-21(N750)
	R408	10k	$\pm 10 \%$		POSW-3		C403	100	$\pm 10 \%$	500 dcwv	COM-20B
	R409	10k	$\pm 5 \%$		1391-210		C404	100	$\pm 10 \%$	300 dcwv	COM-20B
	R410	10k	$\pm 5 \%$		1391-210		C405	$0.01 \mu \mathrm{f}$	+100-0\%	500 dcwv	COC-63
	R411	2.5 k	$\pm 10 \%$		POSW-3		C406	$0.01 \mu \mathrm{f}$	+100-0\%	500dcwv	COC-63
	R412	2.5 k	$\pm 10 \%$		POSW-3	\bigcirc	C407	$0.01 \mu \mathrm{f}$	+100-0\%	300dcwv	COC-63
	R413	12k	$\pm 1 \%$	1/2w	REF-70	畏	C408	10	$\pm 0.5 \mu \mu \mathrm{f}$	500dcwv	COC-21(N750)
	R414	30 k	$\pm 1 \%$	1/2w	REF-70	-	C409	$0.01 \mu \mathrm{f}$	+100-0\%	500 dcwv	COC-63
	R415	18k	$\pm 5 \%$	1/2w	REC-20BF	Z	C410	$0.01 \mu \mathrm{f}$	+100-0\%	1000dcwv	COC-63
	R416	6.8k	$\pm 5 \%$	1 w	REC-30BF		C411	33	$\pm 10 \%$	500 dcwv	COC-21(N750)
	R417	47k	$\pm 5 \%$	1 w	REC-30BF	\%	C412	10	$\pm 0.5 \mu \mu \mathrm{f}$	500 dcwv	COC-21(N750)
	R418	330k	$\pm 5 \%$	1/2w	REC-20BF	5	C413	100	$\pm 10 \%$	500 dcwv	COM-20B
	R419	27k	$\pm 5 \%$	1/2w	REC-20BF	O	C414	100	$\pm 10 \%$	500 dcwv	COM-20B
	R420	1.2 k	$\pm 10 \%$	1/2w	REC-20BF	<	C415	$0.01 \mu \mathrm{f}$	+100-0\%	500 dcwv	COC-63
	R421	18k	$\pm 5 \%$	1/2w	REC-20BF	U	C416	$0.01 \mu \mathrm{f}$	+100-0\%	500 dcwv	COC-63
	R422	1 M	$\pm 5 \%$	1/2w	REC-20BF		C417	7-45	$\pm 10 \%$	500 dcwv	COT-12
	R423	1M	$\pm 5 \%$	1/2w	REC-20BF		C418	22	$\pm 10 \%$	500 dcwv	COM-20B
	R424	33k	$\pm 5 \%$	1 w	REC-30BF		C419	10	$\pm 0.5 \mu \mu \mathrm{f}$	500 dcwv	COC-21(N750)
	R425	27	$\pm 5 \%$	1/2w	REC-20BF		C420	$0.01 \mu \mathrm{f}$	+100-0\%	1000 dcw	COC-63
	R426	150k	$\pm 5 \%$	1/2w	REC-20BF		C421	10	$\pm 0.5 \mu \mu \mathrm{f}$	500 dcwv	COC-21(N750)
	R427	33	$\pm 5 \%$	1/2w	REC-20BF		C422	10	$\pm 0.5 \mu \mu \mathrm{f}$	500 dcwv	COC-21(N750)
	R428	3. 3 M	$\pm 5 \%$	1/2w	REC-20BF						
	R429	3.3M	$\pm 5 \%$	1/2w	REC-20BF						
	R430	33k	$\pm 5 \%$	1 w	REC-30BF		D401	CRYSTAL	DIODE		1N34-A
	R433	12 k	$\pm 1 \%$	1/2w	REF-70		D402	CRYSTAL	DIODE		1 N34-A
	R434	30k	$\pm 1 \%$	1/2w	REF-70		L401	CHOKE	$500 \mu \mathrm{~h}$		CHA-597A
	R435	18k	$\pm 5 \%$	1/2w	REC-20BF		L411	CHOKE	$500 \mu \mathrm{~h}$		CHA-597A
	R436	6.8k	$\pm 5 \%$	1 w	REC-30BF		PL401	PLUG			CDMP-11-12
	R437	47k	$\pm 5 \%$	1 w	REC-30BF		S401	SWITCH			SWRW-176
	R438	330k	$\pm 5 \%$	1/2w	REC-20BF		T401	TRANSFOR	RMER		1391-45
	R439	27k	$\pm 5 \%$	1/2w	REC-20BF		T402	TRANSFO	RMER		1391-45
	R440	1.2 k	$\pm 5 \%$	1/2w	REC-20BF		V401	TUBE			12AX7
	R441	18k	$\pm 5 \%$	1/2w	REC-20BF		V402	TUBE			12AX7
	R442	1 M	$\pm 5 \%$	1/2w	REC-20BF		V403	TUBE			6485 or 6AH6WA
	R443	1M	$\pm 5 \%$	1/2w	REC-20BF		V404	TUBE			6485 or 6AH6WA
	R444	10k	$\pm 5 \%$	2 w	REC-41BF		V405	TUBE			6485 or 6AH6WA
	R445	36k	$\pm 5 \%$	1/2w	REC-20BF		V406	TUBE			6485 or 6AH6WA

For explanation of NOTES, refer to page 42.

Figure 5.4. Schematic Diagram for Pulse-Timing Circuits.

PARTS LIST

		PART NO. (NOTE A)						PART NO. (NOTE A)		
迆	R501	620	$\pm 5 \%$	1/2w	REC-20BF		R562	2.2k $\pm 5 \%$	1/2w	REC-20BF
	R502	620	$\pm 5 \%$	1/2w	REC-20BF		R563	2.7 k - 5 \%	1/2w	REC-20BF
	R503	180k	$\pm 1 \%$	1/2w	REF-70		R564	3 k	1/2w	REC-20BF
	R504	180k	$\pm 1 \%$	1/2w	REF-70		R565	$3.6 \mathrm{k} \quad \pm 5 \%$	1/2w	REC-20BF
	R505	100	$\pm 5 \%$	1/2w	REC-20BF		R566	3.9 k 矿	1/2w	REC-20BF
	R506	100	$\pm 5 \%$	1/2w	REC-20BF		R567	8.2k $\pm 5 \%$	5 w	REPO-43
	R507	300	$\pm 5 \%$	2 w	REC-41BF		R568	10 k - \quad 5\%	5 w	REPO-43
	R508	300	$\pm 5 \%$	2 w	REC-41BF		R569	10k $\pm 5 \%$	5 w	REPO-43
	R509	6.8k	$\pm 5 \%$	1 w	REC-30BF		R570	7.5k $\pm 5 \%$	5 w	REPO-43
	R510	51	$\pm 5 \%$	1/2w	REC-20BF		R571	6.2k $\pm 5 \%$	5 w	REPO-43
	R511	2.7 k	$\pm 5 \%$	1/2w	REC-20BF		R572	$5.6 \mathrm{k} \quad \pm 5 \%$	5 w	REPO-43
	R512	2.7k	$\pm 5 \%$	1/2w	REC-20BF		R573	13 k - \quad 5\%	2 w	REC-41BF
	R513	51	$\pm 5 \%$	1/2w	REC-20BF		R574	13 k - $\pm 5 \%$	2 w	REC-41BF
	R.514	51	$\pm 5 \%$	1/2w	REC-20BF		R575	13 k ($\pm 5 \%$	2 w	REC-41BF
	R515	2.4 k	$\pm 5 \%$	2 w	REC-41BF		R576	$100 \pm 5 \%$	1/2w	REC-20BF
	R.516	330k	$\pm 1 \%$	1/2w	REF-70		R577	$100 \pm 5 \%$	1/2w	REC-20BF
	R517	330k	$\pm 1 \%$	1/2w	REF-70		R578	$1.1 \mathrm{M} \quad \pm 5 \%$	1/2w	REC-20BF
	R518	240k	$\pm 1 \%$	1/2w	REF-70		R579	$1.3 \mathrm{M} \quad \pm 5 \%$	1/2w	REC-20BF
	R519	1.8 M	$\pm 1 \%$	1/2w	REF-70		R580	$22 \pm 5 \%$	1/2w	REC-20BF
	R520	750	$\pm 5 \%$	10 w	REPO-44		R581	$5.1 \mathrm{k} \quad \pm 5 \%$	1/2w	REC-20BF
	R521	620k	+1\%	1 w	REF-75		R582	$4.7 \mathrm{k} \quad \pm 5 \%$	1/2w	REC-20BF
	R522	620k	$\pm 1 \%$	1 w	REF-75					
	R523	2.7 k	$\pm 5 \%$	1/2w	REC-20BF	\bigcirc	C501	0.01 1 f +100-0\% 5	500 dcw	COC-63
	R524	2.7 k	$\pm 5 \%$	1/2w	REC-20BF	$\stackrel{1}{1}$	C502	0.01 f +100-0\% 5	500dcwv	COC-63
	R525	51	$\pm 5 \%$	1/2w	REC-20BF	O	C503	0.01 f + $100-0 \% 5$	500 dcwv	COC-63
	R526	51	$\pm 5 \%$	1/2w	REC-20BF	Z	C504	0.01 $\mu \mathrm{f}+100-0 \% 5$	500dcwv	COC-63
	R527	120	$\pm 5 \%$	2 w	REC-41BF	2	C505	0.1 $\mu \mathrm{f}$. $\pm 10 \%$	400dcwv	COW-25
	R528	120	$\pm 5 \%$	2 w	REC-41BF	-	C507	0.01 1 f +100-0\% 5	$500 \mathrm{dcw} v$	COC-63
	R529	120	$\pm 5 \%$	2 w	REC-41BF	E	C508	0.01 f + $+100-0 \% 5$	500dcwv	COC-63
	R530	120	$\pm 5 \%$	2 w	REC-41BF	C	C509	0.01 $\mathrm{f}+100-0 \% 5$	500dcwv	COC-63
	R531	100	$\pm 5 \%$	1/2w	REC-20BF	A	C510	$0.47 \mu \mathrm{f} \pm 10 \% 2$	200dcwv	COW-16
	R532	100	$\pm 5 \%$	1/2w	REC-20BF	U	C511	0.01 $\mu \mathrm{f}+100-0 \% 5$	500dcwv	COC-63
	R533	51	$\pm 5 \%$	1/2w	REC-20BF					
	R534	51	$\pm 5 \%$	1/2w	REC-20BF		D501	CRYSTAL DIODE		1N191
	R535	51	$\pm 5 \%$	1/2w	REC-20BF		D502	CRYSTAL DIODE		1N191
	R536	51	$\pm 5 \%$	1/2w	REC-20BF		D503	CRYSTAL DIODE		1N191
	R537	600	$\pm 5 \%$	5 w	REPO-42		L501	$6.8 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R538	5k	$\pm 5 \%$	5 w	REPO-42		L502	$6.8 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R539	270k	$\pm 1 \%$	1/2w	REF-70		L503	$10 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R540	1.5M	$\pm 1 \%$	1/2w	REF-70		L504	$10 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R541	130k	$\pm 1 \%$	1/2w	REF-70		L505	$10 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R542	130k	$\pm 1 \%$	1/2w	REF-70		L506	$10 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R543	5.1k	$\pm 5 \%$	2 w	REC-41BF		L507	$4.7 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R544	6.8 k	$\pm 5 \%$	2 w	REC-41BF		L508	$4.7 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R545	300	$\pm 5 \%$	2 w	REC-41BF		L509	$1 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R546	300	$\pm 5 \%$	2 w	REC-41BF		L510	$1 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R547	51	$\pm 5 \%$	2 w	REC-41BF		L511	$0.33 \mu \mathrm{~h} \pm 10 \%$		CHM-1
	R548	51	$\pm 5 \%$	2 w	REC-41BF		L512	$0.33 \mu \mathrm{~h} \pm 10 \%$		CHM-1
	R549	51	$\pm 5 \%$	2 w	REC-41BF		L513	$15 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R550	22	$\pm 5 \%$	1 w	REC-30BF		L514	$4.7 \mu \mathrm{~h} \quad \pm 10 \%$		CHM-1
	R551	22	$\pm 5 \%$	1 w	REC-30BF		L515	$4.7 \mu \mathrm{~h} \pm 10 \%$		CHM-1
	R552	22	$\pm 5 \%$	1 w	REC-30BF		S501	SWITCH, Rotary		SWRW-83
	R553	22	$\pm 5 \%$	1 w	REC-30BF		S502	SWITCH, Rotary		SWRW-177
	R554	56	$\pm 5 \%$	2 w	REC-41BF					
	R555	56 470	$\pm 5 \%$	2 w 10 w	REC-41BF		V502	12 AX 7	V509	12 AX 7
	R557	470	$\pm 5 \%$	10 w	REPO-42-2		V503	6AV5GA	V510	OA2
	R558	680	$\pm 5 \%$	1/2w	REC-20BF		V504	6AV5GA	V511	12BH7
	R559	750	$\pm 5 \%$	1/2w	REC-20BF		V505	6AV5GA	V512	NE-2
	R560	1 k	$\pm 5 \%$	1/2w	REC-20BF		V506	6AV5GA	V513	NE-2
	R561	1.5k	$\pm 5 \%$	1/2w	REC-20BF		V507	6550	V514	NE-2

PL-IOI

Figure 5.5b.
Detail of Plugs for Power Supply.

PARTS LIST

					PART NO. (NOTE A)					PART NO. (NOTE A)	
	R601	1 M	$\pm 5 \%$	1/2 w	REC-20BF	C611A	90				
	R602	1 M	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C611B	30		300 dcwv	COE-52	
	R603	1 M	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C611C	30				
	R604	1 M	$\pm 5 \%$	1/2 w	REC-20BF	C612A	90				
	R605	180 k	$\pm 10 \%$	1 w	REC-30BF	C612B	30		300 dcwv	COE-52	
	R606	33 k	$\pm 10 \%$	2 w	REC-41BF	C612C	30				
	R607	5 k	$\pm 10 \%$		POSW-3	C613A	50				
	R608	220 k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C613B	25		450 dcwv	COE-10	
	R609	5.1 k	$\pm 5 \%$	1 w	REC-30BF	C613C	25				
	R610	10 k	$\pm 5 \%$	2 w	REC-41BF	C614A	90				
	R611	91 k	$\pm 1 \%$	1/2 w	REF-70	C614B	30		300 dcwv	COE-52	
	R612	10 k	$\pm 10 \%$		POSW-3	C614C	30				
	R613	75 k	$\pm 1 \%$	$1 / 2 \mathrm{w}$	REF-70	C615A	90				
	R614	100	$\pm 5 \%$	1/2 w	REC-20BF	C615B	30		300 dcwv	COE-52	
	R615	15 k	$\pm 10 \%$	2 w	REC-41BF	C615C	30				
	R616	10 k	$\pm 10 \%$		POSW-3	C616A	90				
	R617	100	$\pm 5 \%$	10 w	REPO-22	C616B	30		300 dcwv	COE-52	
	R618	500	$\pm 10 \%$		POSW-3	C616C	30				
	R619	2.7 k	$\pm 5 \%$	10 w	REPO-22	C617A					
	R620	82 k	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C617B	25		200 dcwv	COE-51	
	R621	100	$\pm 5 \%$	1/2 w	REC-20BF	C618	0.047	$\pm 10 \%$	200 dcwv	COW-16	
	R622	100	$\pm 5 \%$	1/2 w	REC-20BF	C619A	10		450 dcwv	COE-5	
	R623	100	$\pm 5 \%$	$1 / 2 \mathrm{w}$ $1 / 2 \mathrm{w}$	REC-20BF	C619B	$10{ }_{0} 047$		400 dcwr		
	R625	100	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C623	0.01	$\pm 10 \%$	600 dcwv	COL-71	
	R626	100	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C624	0.01	$\pm 10 \%$	600 dcwv	COL-71	
	R627	100	$\pm 5 \%$	1/2 w	REC-20BF	C625A	90				
	R628	100	$\pm 5 \%$	$1 / 2 \mathrm{w}$	REC-20BF	C625B	30		300 dcwv	COE-52	
	R629	15	$\pm 10 \%$	1/2 w	REW-3C	C625C	30				
	R631	22	$\pm 10 \%$	10 w	REPO-22	F601	FUSE,	mp, S	-Blo Type	FUF-1	
	R632	16	$\pm 10 \%$	40 w	REPO-21P		3AG (fo	15-v	put)		
	R633	22	$\pm 10 \%$	10 w	REPO-22	F601	FUSE, 2	mp, Sl	-Blo Type	FUF-1	
	R634	15	$\pm 10 \%$	10 w	REPO-22		3AG (for	230-v	put)		
	C601	100		150 dcwv 150 dcwv	COE-45	F602	3AG (for $115-\mathrm{v}$ input)			FUF-1	
	C602	10090			COE-45		FUSE, 2			FUF-1	
	C603A					3AG (for $230-\mathrm{v}$ input)					
	C603B	30			300 dcwv	COE-52	L605	CHOKE			485-406
	C603C	30		L606			CHOKE			485-456	
	C604A	90			COE-52	L607	CHOKE			485-406	
	C604B	30		300 dcwv		L608	CHOKE			485-406	
	C604C	30				L609	CHOKE			485-406	
	C605A	90		300 dcwv	COE-52	P601	PILOT LAMP, 6.3 v ,			2LAP-939	
	C605B	30									
	C605C	30				PL601	PLUG, I			ZCDPP-10	
	C606A	90		300 dcwv	COE-52	RX601	RECTIFIER			1N1083	
	C606B	30				RX602	RECTIFIER				
	C606C	30				RX603	RECTIFIER			1N1084	
	C607A	90		300 dcwv	COE-52	RX604	RECTIFIER			1N1084	
	C607B	30				RX605	RECTIFIER			1N1084	
	C607C	30				RX606	RECTIFIER			1 N1084	
	C608A	90		300 dcwv	COE-52	RX607	RECTIFIER			1N1083	
	C608B	30				RX608	RECTIFIER			1N1083	
	C608C	30				RX609	RECTIFIER			1N1084	
	C609A	90				RX610	RECTIFIER			1N1084	
	C609B	30		300 dcwv	COE-52	S601	SWITCH, dpstTRANSFORMER			SWT-333NP	
	C609C	30				T601				565-419	
	C610A	90		300 dcwv	COE-52	V601	TUBE			6AS7-G	
	C610B	30				V602	$\begin{aligned} & \text { TUBE } \\ & \text { TUBE } \end{aligned}$			6AK5	
	C610C	30				V603				OD3	

For explanation of NOTES, refer to page 42.

Resistors i/ Watt unless otherwise specified RESISTANCE IN OHMS UNLESS OTHERWISE SPECIFIED
$K=1000$ OHMS $M=/$ MEGOHM CAPACITANCE VAUES NNE AND OVER IN MICRO
MICRFARADS, LLESS THAN ONE IN MICROFARADS,
UNLESS OTHERISE SPECIFIED.

- AB B SECTIONS $25 \mu \mathrm{H}-200 \mathrm{WV}$

NOTES

(A) Type designations for resistors and capacitors are as follows:
\quad Capacitors
COC-ceramic
COL-oil
COM-mica
COP-polystyrene

Resistors

REC-composition
REF-film
REPO-power
POSC-variable composition POSW-variable wire-wound
(B) All resistances are in ohms unless otherwise indicated by k (kilohms) or M (megohms).
(C) Capacitances are in micromicrofarads except as otherwise indicated by $\mu \mathrm{f}$ (microfarads).
(D) Sections A, B, C, are 90, 30, 30μ f, respectively.
(E) Capacitances are in microfarads.
(F) Value determined in General Radio laboratory.

Elementary Schematic Diagram for Type 1391-P2 Power Supply.

Figure 5.7. Test Waveforms

2. INPUT CIRCUITS
A. DIRECT TRIG $5 \mathrm{v} / \mathrm{cm}$ ($8-\mu \mu \mathrm{f}$ probe)
B. DIR SYNC PULSE $50 \mathrm{v} / \mathrm{cm}$

3. DELAY CIRCUITS $100 \mathrm{kc} 2 \mu \mathrm{sec} / \mathrm{cm}$, DELAY SET FOR $4 \mu \mathrm{sec}$.
A. DIRECT TRIG $10 \mathrm{v} / \mathrm{cm}$
B. TP201 (POS DEL GATE) $50 \mathrm{v} / \mathrm{cm}$
C. TP202 (DEL SWEEP) $50 \mathrm{v} / \mathrm{cm}$
D. TP203 (DEL RESET PULSE) $50 \mathrm{v} / \mathrm{cm}$
E. TP203 (DEL RESET PULSE) $50 \mathrm{v} / \mathrm{cm}$
F. TP204 (COINC GATE) $50 \mathrm{v} / \mathrm{cm}(3 \mu \mathrm{sec})$
G. TP205 (DELAY TRIG INV) $5 \mathrm{v} / \mathrm{cm}$
H. DELAYED SYNC $100 \mathrm{v} / \mathrm{cm}$

4. SWEEP CIRCUITS $100 \mathrm{kc} 6 \mu \mathrm{sec} / \mathrm{cm}$
A. SWEEP TRIGGER (DELAYED $4 \mu \mathrm{sec}) \quad 10 \mathrm{v} / \mathrm{cm}$
B. GRID (7) V305 $50 \mathrm{v} / \mathrm{cm}$
C. POS GATE $50 \mathrm{v} / \mathrm{cm}$
D. NEG GATE $50 \mathrm{v} / \mathrm{cm}$
E. TP301 (SWP GEN) $100 \mathrm{v} / \mathrm{cm}$
F. TP302, 303 (SWP CF) $100 \mathrm{v} / \mathrm{cm}$
G. TP304 (SWP RESET AMP COMP) $5 \mathrm{v} / \mathrm{cm}$
H. TP305 (SWP RESET TRIG) $20 \mathrm{v} / \mathrm{cm}$

5. PULSE TIMING, $6-\mu \mathrm{sec}$ SWEEP, $2-\mu \mathrm{sec}$ DELAY, $2-\mu \mathrm{sec}$ PULSE
A. TP303 (SWP CF) $100 \mathrm{v} / \mathrm{cm}$
B. TP401 (START AMP COMP) $5 \mathrm{v} / \mathrm{cm}$
C. TP402 (STOP AMP COMP) $5 \mathrm{v} / \mathrm{cm}$
D. TP403 START PULSE $5 \mathrm{v} / \mathrm{cm}$
E. TP404 STOP PULSE $5 \mathrm{v} / \mathrm{cm}$
F. V405 GRID (PIN 1) $50 \mathrm{v} / \mathrm{cm}$
G. V406 GRID (PIN 1) 50v/cm

6. PULSE GENERATOR
A. STOP PULSE
B. START PULSE
C. V501 PLATE (PIN 9)
D. V501 PLATE (PIN 1)
E. TP501 (MV NEG) $20 \mathrm{v} / \mathrm{cm}$
F. TP503 (DRIVER GRID POS) $50 \mathrm{v} / \mathrm{cm}$
G. TP502 (MV POS) $20 \mathrm{v} / \mathrm{cm}$
H. TP504 (DRIVER GRID NEG) $50 \mathrm{v} / \mathrm{cm}$
I. TP505 (DRIVER PLATE NEG) $20 \mathrm{v} / \mathrm{cm}$
J. POS PULSE $(94 \Omega) 20 \mathrm{v} / \mathrm{cm}$
K. TP506 (DRIVER PLATE POS) $20 \mathrm{v} / \mathrm{cm}$
L. NEG PULSE (94Ω) $20 \mathrm{v} / \mathrm{cm}$

Figure 5.8. Multivibrator Shelf.

Figure 5.9. Top Interior View.

Figure 5.10. Bottom Interior View.

(

Figure 5.13. Top Interior View of Power Supply.

Figure 5.14. Bottom Interior View of Power Supply.

CENERAL RADIO COMPANY WESTCONCORD, MASSACHUSETTS
 EMErson 9-4400

D\|STR\|CTOFF\|CES

NEW YORK

Broad Ave. at Linden, Ridgefield, N. J.
Telephone N.Y. WOrth 4-2722
N.J. WHitney 3-3140

PHILADELPHIA

1150 York Rd., Abington, Penna.
Telephone HAncock 4-7419

WASHINGTON

8055 13th St., Silver Spring, Md.
Telephone JUniper 5-1088

CHICAGO

6605 West North Ave., Oak Park, III.
Telephone VIllage 8-9400

LOS ANGELES

1000 N. Seward St., Los Angeles 38, Calif. Telephone HOllywood 9-6201

SAN FRANCISCO

1186 Los Altos Ave., Los Altos, Calif.
Telephone WHitecliff 8-8233

CANADA

99 Floral Pkwy., Toronto 15, Ont.
Telephone CHerry 6-2171

REPA\|R SERV\|CES

EAST COAST

General Radio Company
Service Department
22 Baker Ave., W. Concord, Mass.
Telephone EMerson 9-4400

NEW YORK

General Radio Company
Service Department
Broad Ave. at Linden, Ridgefield, N. J.
Telephone N.Y. WOrth 4-2722
N.J. WHitney 3-3140

MIDWEST

General Radio Company
Service Department
6605 West North Ave., Oak Park, III.
Telephone VIIlage 8-9400

WEST COAST

General Radio Company
Service Department
1000 N. Seward St.
Los Angeles 38, Calif.
Telephone HOllywood 9-6201

CANADA

Bayly Engineering, Ltd.
First Street, Ajax, Ontario
Telephone Toronto EMpire 2-3741

[^0]: 4.5.3 SWEEP RESET SYSTEM AND SWEEP PROTECTIVE CIRCUIT. The sweep-generating loop has the same monostable characteristic as the delay generating loop; that is, when the gate is opened by the sweep trigger, the sweep rises until the amplitude comparator triggers and feeds back a stop trigger to close the gate. If, because of rapid warmup of V302 or simul-

